首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
    
Low instream flows and high water temperatures are two factors limiting survival of native salmon in California's Shasta River. This study examines the potential to improve fish habitat conditions by better managing water quantity and quality using flow and water temperature simulation to evaluate potential restoration alternatives. This analysis provides a reasonable estimate of current and potential flows and temperatures for a representative dry year (2001) in the Shasta River, California. Results suggest restoring and protecting cool spring‐fed sources provides the most benefit for native salmon species from a broad range of restoration alternatives. Implementing a combination of restoration alternatives further improves instream habitat. Results also indicate that substituting higher quality water can sometimes benefit native species without increasing environmental water allocations. This study shows the importance of focusing on the limitations of specific river systems, rather than systematically increasing instream flow as a one size fits all restoration approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Minimum flows in rivers and streams aim to provide a certain level of protection for the aquatic environment. The level of protection is described by a measure such as a prescribed proportion of historic flows, wetted perimeter or suitable habitat. Conflicting minimum flow assessments from different instream flow methods are arguably the result of different environmental goals and levels of protection. The goals, the way in which levels of protection are specified, and the relationship between levels of protection and the aquatic environment are examined for three major categories of flow assessment methods: historic flow, hydraulic geometry and habitat. Basic conceptual differences are identified. Flow assessments by historic flow and hydraulic methods are related to river size and tend to retain the ‘character’ of a river. Habitat-based methods make no a priori assumptions about the natural state of the river and flow assessments are based primarily on water depth and velocity requirements. Flow and hydraulic methods assume that lower than natural flows will degrade the stream ecosystem, whereas habitat methods accept the possibility that aspects of the natural ecosystem can be enhanced by other than naturally occurring flows. Application of hydraulic and habitat methods suggests that the environmental response to flow is not linear; the relative change in width and habitat with flow is greater for small rivers than for large. Small rivers are more ‘at risk’ than large rivers and require a higher proportion of the average flow to maintain similar levels of environmental protection. Habitat methods are focused on target species or specific instream uses, and are useful where there are clear management objectives and an understanding of ecosystem requirements. Flow and hydraulic methods are useful in cases where there is a poor understanding of the ecosystem or where a high level of protection for an existing ecosystem is required. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
    
Low streamflows and warm stream temperatures currently limit habitat and productivity of trout, including native Lahontan cutthroat trout in Nevada's Walker Basin. Environmental water transfers, which market water from willing sellers to instream uses, are evaluated to improve instream habitat. We use River Modelling System, an hourly, one‐dimensional hydrodynamic and water quality model, to estimate current and potential environmental water transfer effects on stream temperatures. Model runs simulate a range of environmental water transfers, from 0.14 to 1.41 cms, at diversions and reservoirs for wet year 2011 and dry year 2012. Results indicate that critically warm stream temperatures generally coincide with low flows, and thermal refugia exist in East Walker River, a tributary of the Walker River. Environmental water transfers reduce maximum stream temperatures by up to 3 °C in dry years and are more effective in dry years than wet years. This research suggests that environmental water transfers can enhance instream habitat by improving water quality as well as increasing instream flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
    
An important question for salmon restoration efforts in the western USA is ‘How should habitat restoration plans be altered to accommodate climate change effects on stream flow and temperature?’ We developed a decision support process for adapting salmon recovery plans that incorporates (1) local habitat factors limiting salmon recovery, (2) scenarios of climate change effects on stream flow and temperature, (3) the ability of restoration actions to ameliorate climate change effects, and (4) the ability of restoration actions to increase habitat diversity and salmon population resilience. To facilitate the use of this decision support framework, we mapped scenarios of future stream flow and temperature in the Pacific Northwest region and reviewed literature on habitat restoration actions to determine whether they ameliorate a climate change effect or increase life history diversity and salmon resilience. Under the climate change scenarios considered here, summer low flows decrease by 35–75% west of the Cascade Mountains, maximum monthly flows increase by 10–60% across most of the region, and stream temperatures increase between 2 and 6°C by 2070–2099. On the basis of our literature review, we found that restoring floodplain connectivity, restoring stream flow regimes, and re‐aggrading incised channels are most likely to ameliorate stream flow and temperature changes and increase habitat diversity and population resilience. By contrast, most restoration actions focused on in‐stream rehabilitation are unlikely to ameliorate climate change effects. Finally, we illustrate how the decision support process can be used to evaluate whether climate change should alter the types or priority of restoration actions in a salmon habitat restoration plan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
    
Many river restoration projects are focusing on restoring environmental flow regimes to improve ecosystem health in rivers that have been developed for water supply, hydropower generation, flood control, navigation, and other purposes. In efforts to prevent future ecological damage, water supply planners in some parts of the world are beginning to address the water needs of river ecosystems proactively by reserving some portion of river flows for ecosystem support. These restorative and protective actions require development of scientifically credible estimates of environmental flow needs. This paper describes an adaptive, inter‐disciplinary, science‐based process for developing environmental flow recommendations. It has been designed for use in a variety of water management activities, including flow restoration projects, and can be tailored according to available time and resources for determining environmental flow needs. The five‐step process includes: (1) an orientation meeting; (2) a literature review and summary of existing knowledge about flow‐dependent biota and ecological processes of concern; (3) a workshop to develop ecological objectives and initial flow recommendations, and identify key information gaps; (4) implementation of the flow recommendations on a trial basis to test hypotheses and reduce uncertainties; and (5) monitoring system response and conducting further research as warranted. A range of recommended flows are developed for the low flows in each month, high flow pulses throughout the year, and floods with targeted inter‐annual frequencies. We describe an application of this process to the Savannah River, in which the resultant flow recommendations were incorporated into a comprehensive river basin planning process conducted by the Corps of Engineers, and used to initiate the adaptive management of Thurmond Dam. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
    
Gravel augmentation is used in sediment‐starved streams to improve salmonid spawning habitat. As gravel is added to river channels, water surface elevations may rise in adjacent areas, activating floodplain habitat at lower flows, and floodplains inundate more frequently, potentially affecting the quantity and quality of juvenile salmonid rearing habitat. We analysed 5 years of juvenile Chinook salmon Oncorhynchus tschawytscha and steelhead Oncorhynchus mykiss data from snorkel surveys before and after gravel augmentation in the Lower American River, a low‐gradient, highly regulated alluvial river in California's Central Valley. We measured the quality and quantity of rearing habitat (current velocity and areal extent of inundated riparian vegetation) following gravel placement and tested whether these factors affected juvenile abundance. Gravel augmentation increased floodplain extent by 3.7–19.8%, decreased average flow velocity from 1.6 to 0.3 m s?1 and increased the amount of vegetative cover from 0.3% to 22.6%. Juvenile abundances increased significantly for both species following augmentation. However, the strength of the relationship between abundance and habitat variables was greater for smaller salmonids. These results suggest that, in addition to enhancing salmonid spawning habitat, gravel augmentation can improve rearing habitat where channel incision and/or regulated hydrographs disconnect floodplains from main river channels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
    
‘Downstream’ hydraulic geometry relationships describe the variation of water depth, velocity, and water surface width between rivers of different size at a characteristic discharge, whereas ‘at-a-station’ geometry describes the variation of hydraulic geometry with discharge within a reach. The instream flow incremental methodology (IFIM) also predicts the variation in water depth and velocity with discharge at a reach scale, so that hydraulic geometry relationships can potentially be used as a preliminary method of habitat assessment. Hydraulic geometry relationships were calculated from instream habitat surveys of 73 New Zealand river reaches with mean flows varying from 0.6 to 204 m3 s−1 and an average gradient of 0.0047. The exponents of both at-a-station and downstream hydraulic geometry relationships were within the range of values reported in other international studies, although the exponents indicated that New Zealand rivers tended to experience greater changes in velocity and less in depth than the international average, probably because of high average gradient. The frequency distributions of water depth and velocity were positively skewed in most rivers, and on average the modal velocity was 90% of the mean velocity and the modal depth was 80% of mean depth. The use of at-a-station hydraulic geometry relationships for instream habitat assessment was compared to depth and velocity predictions using habitat simulation techniques (IFIM) in two streams. Measurements of stream width and depth at five cross-sections at two calibration discharges were used to establish at-a-station hydraulic geometry relationships. These predicted mean depth and velocity within 8% of the reach average values of the IFIM surveys within the range of calibration discharges and within 10–15% of the IFIM reach average when extrapolated beyond the calibration discharges. Hydraulic geometry can be used to indicate whether hydraulic conditions approach a ‘threshold’ such as a minimum acceptable depth or velocity, thus predicating the need for more extensive habitat survey and analysis. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
    
In British Columbia, side‐channels have been built to compensate for lost salmonid habitat. Most are structurally simple with little in‐stream wood; however, they support high densities of juvenile coho salmon. We longitudinally divided in halves the top 100 m of two dead‐end artificial side‐channels, one side‐channel with low winter water temperatures (surface‐fed) and one with relatively higher water temperatures (groundwater‐fed), closed the downstream end of each side‐channel with two‐way traps, and treated only one half of each channel with bundles of wood. Trapped fish were marked daily and coho salmon movement, growth and smolt output were monitored for two years. Wood addition increased juvenile coho winter carrying capacity and spring smolt output only in the ‘colder’ surface‐fed side‐channel. In contrast, in the groundwater‐fed side‐channel, with relatively higher water temperatures, the wood treatment slightly reduced the channel's carrying capacity and the spring output of coho salmon smolts. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
    
We examined the relationship between the physical environment and habitat use of juvenile masu salmon, Oncorhynchus masou, in the Nobori River in Hokkaido, Japan to provide a perspective for the conservation of fish habitat in regulated streams. The study was undertaken during the autumn and winter, with an emphasis on the hierarchy of three spatial scales: microhabitat, channel‐unit and reach scales. The microhabitat‐scale analysis indicated juvenile masu salmon preferred a midstream habitat type, with a greater depth (Avg. ± SD: 35.4 ± 14.2 cm) and high (43.4 ± 23.1 cm s?1) and uniform current velocities during the autumn, and a channel margin habitat type with a moderate current (about 20 cm s?1) and submerged cover during winter. In addition, different cover types have different roles in determining juvenile salmon distributions during winter. Grass cover had extremely high carrying capacities, whereas coarse substrate cover provided winter habitat for larger juvenile salmon. Channel‐unit scale analyses showed that abundance of juvenile salmon tended to be higher in pools than runs in the autumn through winter. Reach‐scale analysis showed that abundance and mean body length of juvenile salmon significantly differed between differently regulated reaches during winter, associated with the dominant cover type in each reach. This study demonstrated that the habitat conditions determining juvenile masu salmon distribution differ according to the season and scale of analysis. Therefore, for conservation of fish communities, it is important to evaluate and conserve or create fish habitats in regulated reaches, with a focus on the hierarchy of spatial scales and seasonal differences. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
    
In August 2000, a continuous flow release was initiated below a diversion dam in the Bridge River, British Columbia, to rewater 4 km of stream bed that had been without flow for 37 years. Within a month after the start of flows, periphyton and invertebrate populations were present in the previously dry reach. Juvenile salmonids were common downstream of the rewetted reach, but only a few moved upstream to the new habitats after flow restoration. However, adult salmon quickly colonized the rewetted area and spawned 1–8 months after the onset of flow. Age‐0 salmonid abundance was high 1 year later and appeared to be largely due to successful spawning in the new reach rather than the upstream migration of juveniles. We conclude that the full colonization of the new reach will take more than a year as a consequence of the migratory patterns of the salmonids species in the river, and that monitoring programs for habitat restoration should be cognizant of the lags in the response of target populations because of their life histories. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
    
The diversity of fish species found in warmwater stream systems provides a perplexing challenge when selecting species for assessment of instream flow needs from physical habitat analyses. In this paper we examined the feasibility of developing habitat suitability criteria (HSC) for the entire fish community of a warmwater stream using habitat guilds. Each species was placed a priori into a guild structure and habitat data were collected for depth, velocity, Froude number, distance to cover, embeddedness and dominant and subdominant substrate. Correct guild classification was tested with linear discriminant analysis for each species. Correct classification based on habitat‐use data was highest for riffle and pool‐cover guilds, whereas the fast‐generalist and pool‐run classes, the broader niche guilds, were more frequently misclassified. Variables most important for discriminating guilds were Froude number, velocity and depth in that order. Nonparametric tolerance limits were used to develop guild suitability criteria for continuous variables and the Strauss linear index was used for categorical variables. We recommend the use of a wide array of variables to establish more accurate habitat analysis. Additionally, guild HSC can be developed with similar effort to that needed to develop HSC for a small number of individual species. Results indicate that a habitat guild structure can be successfully transferred to another river basin and that habitats for a diverse fish assemblage can be adequately described by a small number of habitat guilds. This approach represents an alternative for incorporating entire fish assemblages into habitat analyses of warmwater stream systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The River2D two‐dimensional hydraulic and habitat model was used to simulate fall‐run Chinook salmon (Oncorhynchus tschawytscha) spawning and fry and juvenile rearing habitat of the first phase of a stream channel restoration project on Clear Creek, California. Habitat was simulated for a range of stream flows: (1) before restoration; (2) based on the restoration design; (3) immediately after restoration; and (4) after one and two large flow events. Hydraulic and structural data were collected for three sites before restoration, and prerestoration habitat was simulated. Habitat simulated for these sites was extrapolated to the prerestoration area based on habitat mapping. The topographical plan for the restoration was used to simulate the anticipated habitat after restoration. Although the restoration increased spawning habitat, it was less successful for rearing habitat. Channel changes associated with high‐flow events did not entirely negate the benefits of the restoration project. The results of this study point out the need for models that can simulate the changes in channel topography associated with high‐flow events, which could then be used to simulate habitat over time. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
    
Up to now, most lowland stream restoration projects were unsuccessful in terms of ecological recovery. Aiming to improve the success of stream restoration projects, a novel approach to restore sandy‐bottom lowland streams degraded by channel incision was launched, consisting of the addition of sand to the stream channel in combination with the introduction of coarse woody debris. Yet it remained unknown whether this novel measure of sand addition is actually effective in terms of biodiversity improvements. The aim of the present study was therefore to evaluate if sand addition can improve hydromorphological stream complexity on the short term leading to an increase in macroinvertebrate biodiversity. To this end, particle transport, water depth, current velocity, dissolved oxygen dynamics, and sediment composition were measured. The response of the macroinvertebrate community composition was determined at different stages during the disturbance and short‐term recovery process. Immediately downstream the sand addition site, transport and sedimentation of the sand were initially intense, until an equilibrium was reached and the physical conditions stabilized. The stream section matured fast as habitat formation took place within a short term. Macroinvertebrate diversity decreased initially but recovered rapidly following stabilization. Moreover, an increase in rheophilic taxa was observed in the newly formed habitats. Thus, although sand addition initially disturbed the stream, a relatively fast physical and biological recovery occurred, leading to improved instream conditions for a diverse macroinvertebrate community, including rheophilic taxa. Therefore, we concluded that sand addition is a promising restoration measure for incised lowland streams.  相似文献   

14.
    
Ecological research increasingly demonstrates that the best fish habitat is associated with complex, dynamically migrating channels. Active erosion and deposition create pools, side channels, and surfaces for recruitment of riparian vegetation, resulting in hydraulic complexity. As such, the most effective and sustainable restoration strategies restore natural processes, and in turn, create biological habitat. Nevertheless, there exists a social–cultural preference for stable channels. Landowners are often unhappy with eroding banks and, more broadly, are uncomfortable with ‘messy’ ecosystems and the erosion, deposition, and channel migration that are essential components of the dynamic channels that provide the greatest floodplain biodiversity. Episodic bank erosion and failure are often treated with emergency response measures, such as riprap and bank hardening. This often results in simplified channels with minimized instream habitat. Here, we propose an alternative management approach for streams with cohesive banks, and where active erosion is concentrated in ‘hot spots’ that are roughly predictable based on geomorphic analysis. We term the approach anticipatory management and present an application of the approach to Carneros Creek, an incised tributary to the Napa River. We contrast the likely habitat values and agricultural land loss of the anticipatory management approach to: (i) a conventional bank stabilization project proposed for the creek, and (ii) a series of uniform setbacks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
    
Stefano Burchi 《国际水》2013,38(3):397-400
Abstract

The MODSIM 8.0 decision support system (DSS) for integrated river basin management (IRBM) has been adapted from a prior appropriation rights-based system to one found in Korea and in much of Asia where water deficits are shared among water use sectors, taking into account priorities established by water policy and institutional frameworks. The Korean version called KModSim is applied to the Geum River basin for evaluation of long-term sustainability of existing and new water infrastructure and facilities under integrated, basin-wide water resources management. KModSim is calibrated to the physical and hydrologic characteristics of the basin, as well as to operational and administrative water allocation policies for municipal and industrial water supply, irrigation, hydropower, transbasin diversions, and low-flow augmentation for environmental purposes. Conditional reservoir operational rules that adapt to changing river basin hydrologic conditions are developed from an implicit stochastic optimization algorithm and incorporated using the extensive user-customization capabilities of KModSim. Results demonstrate that decision guidance under KModSim enhances beneficial water uses in the Geum River system through fully integrated, basin-wide management.  相似文献   

16.
    
Stream habitat restoration is an important tool for fisheries management in impaired lotic systems. Although small‐scale benefits of stream habitat restoration are commonly investigated, it is difficult to demonstrate population effects. The Pahsimeroi River Chinook salmon Oncorhynchus tshawytscha population was previously restricted to the lower portion of the river by multiple irrigation structures. To address fish passage issues, a combination of restoration projects was initiated including barrier removals, instream flow enhancements and installation of fish screens on diversions. The largest barrier was removed in 2009, more than doubling the amount of accessible linear habitat. We hypothesized restoration efforts would expand the distribution of spawning salmon in the Pahsimeroi River watershed, leading to a broader distribution of juveniles. We also hypothesized a broader juvenile distribution would have population effects by reducing the prevalence of density‐dependent growth and survival. Redds were documented in newly accessible habitat immediately following barrier removal and accounted for a median of 42% of all redds in the Pahsimeroi River watershed during 2009–2015. Snorkel surveys also documented juvenile rearing in newly accessible habitat. Juvenile productivity increased from a median of 64 smolts/female spawner for brood years 2002–2008 to 99 smolts/female spawner for brood years 2009–2014. Overall, results suggested increased habitat accessibility in the Pahsimeroi River broadened the distribution of spawning adult and rearing juvenile salmon and reduced the effects of density‐dependent survival. Large‐scale stream restoration efforts can have a population effect. Despite the large‐scale effort and response, habitat restoration alone is likely not sufficient to restore this population.  相似文献   

17.
    
Precipitation in fall and winter is important to recharge aquifers in Northern California and the Pacific Northwestern United States, causing the baseflow in rivers ascend during the time when Chinook salmon (Oncorhynchus tshawytscha) construct redds. Herein, we evaluate the availability of spawning habitats under a constant streamflow common in regulated rivers against ascending baseflows patterned from free‐flowing rivers. A binomial logistic regression model was applied to predict the suitability of redd locations based on physical characteristics. Next, two‐dimensional hydrodynamic habitat models were developed at two locations representing a broad range of channel forms common in large rivers. Hydrodynamic and habitat models were leveraged together to simulate the quality, amount, and spatial distribution of spawning habitat at a series of individual flow rates, as well as the combined effect of those flow rates through a spawning season with ascending baseflows. Ascending baseflows increased the abundance of spawning habitat over individual streamflows at a site where the river channel is confined by levee‐like features. However, improvements were greater at an unconfined site that facilitated lateral connectivity and greater expansion of wetted channel area as streamflows increased. Ascending baseflows provided spatial separation in preferred habitats over a spawning season, which may reduce the risk of superimposition among runs or among species. Ascending baseflows provided a benefit across the range of hydrologic regimes in a 100‐year gauge record ranging from 20% to 122% improvements in habitat area over low streamflows that are currently used to manage for spawning habitat. Although replicating natural flow regimes in managed systems can be impossible or impractical, these results demonstrate that incorporating elements of the natural flow regime like ascending baseflows can benefit the restoration and conservation of riverine species.  相似文献   

18.
    
Observations of the presence or density of individuals in specific habitats are often used to develop predictive models of preferential habitat use and habitat suitability curves. However, most studies only use day‐time observations to model habitat associations. In this paper, we present day and night observations of habitat use by two abundant species of freshwater shrimp, Atya lanipes and Xiphocaris elongata, in a tropical montane stream. At night, the number of shrimp observed was an order of magnitude greater than during the day. Habitat preferences of Atya changed, with more individuals using low velocity edge sites at night. Xiphocaris were not readily visible during the day, but were very abundant at night. Our results suggest that habitat models cannot be based only on day‐time observations. Because the level of nocturnal activity is not known for most species of fish and invertebrates, studies of habitat preferences should include both day and night observations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
    
There is much in the scientific literature dealing with methods to determine environmental water requirements in streams. However, most of these methods are suited to long‐term water resource planning and setting regulatory targets. In Australia, the environment is now recognized as a legitimate user of water with its own water entitlement. With this in mind, and in the context of a water market, transparent decisions need to be made as to how best to utilize environmental water reserves on yearly, monthly or even daily basis. Environmental water managers must identify priority flow components and environmental assets. This will call for information on environmental water requirements to be presented in a manner that informs operational decisions. This paper proposes that describing environmental requirements as a function relating to different flow levels, a relationship named here as an environmental response curve, is an important first step in making transparent decisions to achieve the best outcome from limited environmental entitlements. The environmental response curves allow the marginal benefit of water (or value of each additional ML) to the environment to be understood. This allows environmental recommendations to be more readily translated into operational rules. This is not a new environmental flows methodology. The contribution of this paper is representing existing data to allow operational decisions. This paper provides a possible way forward in representing environmental demands for operation of environmental water and highlights areas where our current knowledge falls short. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
    
Urbanization and its associated stressors such as flow alteration, channel modification and poor water quality is a leading cause of ecological degradation to rivers and streams. Driven by public concern to address this issue, there has been a dramatic increase in urban restoration projects since 1990 using in‐stream structures. Attempts at restoring the ecological condition of urban streams using structures have produced varied results, but projects do not often meet planned ecological goals. A major challenge to improving the ecological health of urban streams is to better understand how to incorporate ecological assessments into a ‘restoration’ design framework with reasonable expectations for ecological recovery. A naturalization design framework was used in a project on a 0.62‐km reach of the North Branch of the Chicago River in Northbrook, Illinois. Initial surveys of channel morphology, habitat and biota identified poor pool‐riffle bed structure and fish biodiversity, which became the basis for research and development of a pool‐riffle structure specifically designed for constrained, low‐gradient channels. Habitat and fish surveys were conducted pre‐ and post‐construction. The project improved mesohabitat structure, and fish abundance, and biomass and diversity were greater for 2 years following construction (2002–2003) compared to 3 years prior to construction (1999–2001). However, the improved fish metrics were in the low range when compared to rural streams in the same ecoregion, and the fish community consisted primarily of tolerant, slow‐water species. Absent were intolerant and riffle dwelling species, such as insectivorous cyprinids and darters. Assessment of pre‐ and post‐project ecological condition and the use of species information provided a basis for ecologically informed design and expanded our understanding of the limitations to restoring urban streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号