共查询到9条相似文献,搜索用时 4 毫秒
1.
《International Journal of Forecasting》2019,35(4):1520-1532
Daily and weekly seasonalities are always taken into account in day-ahead electricity price forecasting, but the long-term seasonal component has long been believed to add unnecessary complexity, and hence, most studies have ignored it. The recent introduction of the Seasonal Component AutoRegressive (SCAR) modeling framework has changed this viewpoint. However, this framework is based on linear models estimated using ordinary least squares. This paper shows that considering non-linear autoregressive (NARX) neural network-type models with the same inputs as the corresponding SCAR-type models can lead to yet better performances. While individual Seasonal Component Artificial Neural Network (SCANN) models are generally worse than the corresponding SCAR-type structures, we provide empirical evidence that committee machines of SCANN networks can outperform the latter significantly. 相似文献
2.
Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination 总被引:5,自引:0,他引:5
In this paper, we examine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR), and neural network (NN) time series models for 47 monthly macroeconomic variables of the G7 economies. Unlike previous studies that typically consider multiple but fixed model specifications, we use a single but dynamic specification for each model class. The point forecast results indicate that the STAR model generally outperforms linear autoregressive models. It also improves upon several fixed STAR models, demonstrating that careful specification of nonlinear time series models is of crucial importance. The results for neural network models are mixed in the sense that at long forecast horizons, an NN model obtained using Bayesian regularization produces more accurate forecasts than a corresponding model specified using the specific-to-general approach. Reasons for this outcome are discussed. 相似文献
3.
《International Journal of Forecasting》2019,35(4):1451-1459
This paper describes the methods used by Team Cassandra, a joint effort between IBM Research Australia and the University of Melbourne, in the GEFCom2017 load forecasting competition. An important first phase in the forecasting effort involved a deep exploration of the underlying dataset. Several data visualisation techniques were applied to help us better understand the nature and size of gaps, outliers, the relationships between different entities in the dataset, and the relevance of custom date ranges. Improved, cleaned data were then used to train multiple probabilistic forecasting models. These included a number of standard and well-known approaches, as well as a neural-network based quantile forecast model that was developed specifically for this dataset. Finally, model selection and forecast combination were used to choose a custom forecasting model for every entity in the dataset. 相似文献
4.
This paper suggests a novel inhomogeneous Markov switching approach for the probabilistic forecasting of industrial companies’ electricity loads, for which the load switches at random times between production and standby regimes. The model that we propose describes the transitions between the regimes using a hidden Markov chain with time-varying transition probabilities that depend on calendar variables. We model the demand during the production regime using an autoregressive moving-average (ARMA) process with seasonal patterns, whereas we use a much simpler model for the standby regime in order to reduce the complexity. The maximum likelihood estimation of the parameters is implemented using a differential evolution algorithm. Using the continuous ranked probability score (CRPS) to evaluate the goodness-of-fit of our model for probabilistic forecasting, it is shown that this model often outperforms classical additive time series models, as well as homogeneous Markov switching models. We also propose a simple procedure for classifying load profiles into those with and without regime-switching behaviors. 相似文献
5.
Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition 总被引:1,自引:0,他引:1
Robert R. AndrawisAuthor Vitae Hisham El-ShishinyAuthor Vitae 《International Journal of Forecasting》2011,27(3):672
In this work we introduce the forecasting model with which we participated in the NN5 forecasting competition (the forecasting of 111 time series representing daily cash withdrawal amounts at ATM machines). The main idea of this model is to utilize the concept of forecast combination, which has proven to be an effective methodology in the forecasting literature. In the proposed system we attempted to follow a principled approach, and make use of some of the guidelines and concepts that are known in the forecasting literature to lead to superior performance. For example, we considered various previous comparison studies and time series competitions as guidance in determining which individual forecasting models to test (for possible inclusion in the forecast combination system). The final model ended up consisting of neural networks, Gaussian process regression, and linear models, combined by simple average. We also paid extra attention to the seasonality aspect, decomposing the seasonality into weekly (which is the strongest one), day of the month, and month of the year seasonality. 相似文献
6.
《International Journal of Forecasting》2019,35(1):321-335
Increasingly, prediction markets are being embraced as a mechanism for eliciting and aggregating dispersed information and providing a means of deriving probabilistic forecasts of future uncertain events. The efficient market hypothesis postulates that prediction market prices should incorporate all information that is relevant to the performances of the contracts traded. This paper shows that such may not be the case in relation to information regarding environmental factors such as the weather and atmospheric conditions. In the context of horserace betting markets, we demonstrate that even after the effects of these factors on the contestants (horses and jockeys) have been discounted, the accuracy of the probabilities derived from market prices is affected systematically by the prevailing weather and atmospheric conditions. We show that significantly better forecasts can be derived from prediction markets if we correct for this phenomenon, and that these improvements have substantial economic value. 相似文献
7.
《International Journal of Forecasting》2023,39(2):587-605
The empirical literature of stock market predictability mainly suffers from model uncertainty and parameter instability. To meet this challenge, we propose a novel approach that combines dimensionality reduction, regime-switching models, and forecast combination to predict excess returns on the S&P 500. First, we aggregate the weekly information of 146 popular macroeconomic and financial variables using different principal component analysis techniques. Second, we estimate Markov-switching models with time-varying transition probabilities using the principal components as predictors. Third, we pool the models in forecast clusters to hedge against model risk and to evaluate the usefulness of different specifications. Our weekly forecasts respond to regime changes in a timely manner to participate in recoveries or to prevent losses. This is also reflected in an improvement of risk-adjusted performance measures as compared to several benchmarks. However, when considering stock market returns, our forecasts do not outperform common benchmarks. Nevertheless, they do add statistical and, in particular, economic value during recessions or in declining markets. 相似文献
8.
《管理科学学报(英文)》2020,5(3):212-225
As iron ore is the fundamental steel production resource, predicting its price is strategically important for risk management at related enterprises and projects. Based on a signal decomposition technology and an artificial neural network, this paper proposes a hybrid EEMD-GORU model and a novel data reconstruction method to explore the price risk and fluctuation correlations between China’s iron ore futures and spot markets, and to forecast the price index series of China’s and international iron ore spot markets from the futures market. The analysis found that the iron ore futures market in China better reflected the price fluctuations and risk factors in the imported and international iron ore spot markets. However, the forward price in China’s iron ore futures market was unable to adequately reflect the changes in the domestic iron ore market, and was therefore unable to fully disseminate domestic iron ore market information. The proposed model was found to provide better market risk perceptions and predictions through its combinations of the different volatility information in futures and spot markets. The results are valuable references for the early-warning and management of the related enterprise project risks. 相似文献
9.
Computer-based demand forecasting systems have been widely adopted in supply chain companies, but little research has studied how these systems are actually used in the forecasting process. We report the findings of a case study of demand forecasting in a pharmaceutical company over a 15-year period. At the start of the study, managers believed that they were making extensive use of their forecasting system that was marketed based on the accuracy of its advanced statistical methods. Yet most forecasts were obtained using the system’s facility for judgmentally overriding the automatic statistical forecasts. Carrying out the judgmental interventions involved considerable management effort as part of a sales & operations planning (S&OP) process, yet these often only served to reduce forecast accuracy. This study uses observations of the forecasting process, interviews with participants and data on the accuracy of forecasts to investigate why the managers continued to use non-normative forecasting practices for many years despite the potential economic benefits that could be achieved through change. The reasons for the longevity of these practices are examined both from the perspective of the individual forecaster and the organization as a whole. 相似文献