首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This paper suggests a novel inhomogeneous Markov switching approach for the probabilistic forecasting of industrial companies’ electricity loads, for which the load switches at random times between production and standby regimes. The model that we propose describes the transitions between the regimes using a hidden Markov chain with time-varying transition probabilities that depend on calendar variables. We model the demand during the production regime using an autoregressive moving-average (ARMA) process with seasonal patterns, whereas we use a much simpler model for the standby regime in order to reduce the complexity. The maximum likelihood estimation of the parameters is implemented using a differential evolution algorithm. Using the continuous ranked probability score (CRPS) to evaluate the goodness-of-fit of our model for probabilistic forecasting, it is shown that this model often outperforms classical additive time series models, as well as homogeneous Markov switching models. We also propose a simple procedure for classifying load profiles into those with and without regime-switching behaviors.  相似文献   

2.
In this work we introduce the forecasting model with which we participated in the NN5 forecasting competition (the forecasting of 111 time series representing daily cash withdrawal amounts at ATM machines). The main idea of this model is to utilize the concept of forecast combination, which has proven to be an effective methodology in the forecasting literature. In the proposed system we attempted to follow a principled approach, and make use of some of the guidelines and concepts that are known in the forecasting literature to lead to superior performance. For example, we considered various previous comparison studies and time series competitions as guidance in determining which individual forecasting models to test (for possible inclusion in the forecast combination system). The final model ended up consisting of neural networks, Gaussian process regression, and linear models, combined by simple average. We also paid extra attention to the seasonality aspect, decomposing the seasonality into weekly (which is the strongest one), day of the month, and month of the year seasonality.  相似文献   

3.
Computer-based demand forecasting systems have been widely adopted in supply chain companies, but little research has studied how these systems are actually used in the forecasting process. We report the findings of a case study of demand forecasting in a pharmaceutical company over a 15-year period. At the start of the study, managers believed that they were making extensive use of their forecasting system that was marketed based on the accuracy of its advanced statistical methods. Yet most forecasts were obtained using the system’s facility for judgmentally overriding the automatic statistical forecasts. Carrying out the judgmental interventions involved considerable management effort as part of a sales & operations planning (S&OP) process, yet these often only served to reduce forecast accuracy. This study uses observations of the forecasting process, interviews with participants and data on the accuracy of forecasts to investigate why the managers continued to use non-normative forecasting practices for many years despite the potential economic benefits that could be achieved through change. The reasons for the longevity of these practices are examined both from the perspective of the individual forecaster and the organization as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号