首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Global Energy Forecasting Competition 2017 (GEFCom2017) attracted more than 300 students and professionals from over 30 countries for solving hierarchical probabilistic load forecasting problems. Of the series of global energy forecasting competitions that have been held, GEFCom2017 is the most challenging one to date: the first one to have a qualifying match, the first one to use hierarchical data with more than two levels, the first one to allow the usage of external data sources, the first one to ask for real-time ex-ante forecasts, and the longest one. This paper introduces the qualifying and final matches of GEFCom2017, summarizes the top-ranked methods, publishes the data used in the competition, and presents several reflections on the competition series and a vision for future energy forecasting competitions.  相似文献   

2.
Demand forecasting is and has been for years a topic of great interest in the electricity sector, being the temperature one of its major drivers. Indeed, one of the challenges when modelling the load is to choose the right weather station, or set of stations, for a given load time series. However, only a few research papers have been devoted to this topic. This paper reviews the most relevant methods that were applied during the Global Energy Forecasting Competition of 2014 (GEFCom2014) and presents a new approach to weather station selection, based on Genetic Algorithms (GA), which allows finding the best set of stations for any demand forecasting model, and outperforms the results of existing methods. Furthermore its performance has also been tested using GEFCom2012 data, providing significant error improvements. Finally, the possibility of combining the weather stations selected by the proposed GA using the BFGS algorithm is briefly tested, providing promising results.  相似文献   

3.
This paper provides detailed information about team Leustagos’ approach to the wind power forecasting track of GEFCom 2012. The task was to predict the hourly power generation at seven wind farms, 48 hours ahead. The problem was addressed by extracting time- and weather-related features, which were used to build gradient-boosted decision trees and linear regression models. This approach achieved first place in both the public and private leaderboards.  相似文献   

4.
We present a refined parametric model for forecasting electricity demand which performed particularly well in the recent Global Energy Forecasting Competition (GEFCom 2012). We begin by motivating and presenting a simple parametric model, treating the electricity demand as a function of the temperature and day of the data. We then set out a series of refinements of the model, explaining the rationale for each, and using the competition scores to demonstrate that each successive refinement step increases the accuracy of the model’s predictions. These refinements include combining models from multiple weather stations, removing outliers from the historical data, and special treatments of public holidays.  相似文献   

5.
This paper describes the methods used by Team Cassandra, a joint effort between IBM Research Australia and the University of Melbourne, in the GEFCom2017 load forecasting competition. An important first phase in the forecasting effort involved a deep exploration of the underlying dataset. Several data visualisation techniques were applied to help us better understand the nature and size of gaps, outliers, the relationships between different entities in the dataset, and the relevance of custom date ranges. Improved, cleaned data were then used to train multiple probabilistic forecasting models. These included a number of standard and well-known approaches, as well as a neural-network based quantile forecast model that was developed specifically for this dataset. Finally, model selection and forecast combination were used to choose a custom forecasting model for every entity in the dataset.  相似文献   

6.
This report describes the forecasting model which was developed by team “4C” for the global energy forecasting competition 2017 (GEFCom2017), with some modifications added afterwards to improve its accuracy. The model is based on neural networks. Temperature scenarios obtained from historical data are used as inputs to the neural networks in order to create load scenarios, and these load scenarios are then transformed into quantiles. By using a feature selection approach that is based on a stepwise regression technique, a neural network based model is developed for each zone. Furthermore, a dynamic choice of the temperature scenarios is suggested. The feature selection and dynamic choice of the temperature scenarios can improve the quantile scores considerably, resulting in very accurate forecasts among the top teams.  相似文献   

7.
We present a simple quantile regression-based forecasting method that was applied in the probabilistic load forecasting framework of the Global Energy Forecasting Competition 2017 (GEFCom2017). The hourly load data are log transformed and split into a long-term trend component and a remainder term. The key forecasting element is the quantile regression approach for the remainder term, which takes into account both weekly and annual seasonalities, such as their interactions. Temperature information is used only for stabilizing the forecast of the long-term trend component. Information on public holidays is ignored. However, the forecasting method still placed second in the open data track and fourth in the definite data track, which is remarkable given the simplicity of the model. The method also outperforms the Vanilla benchmark consistently.  相似文献   

8.
This paper describes the preprocessing and forecasting methods used by team Orbuculum during the qualifying match of the Global Energy Forecasting Competition 2017 (GEFCom2017). Tree-based algorithms (gradient boosting and quantile random forest) and neural networks made up an ensemble. The ensemble prediction quantiles were obtained by a simple averaging of the ensemble members’ prediction quantiles. The result shows a robust performance according to the pinball loss metric, with the ensemble model achieving third place in the qualifying match of the competition.  相似文献   

9.
We present an ensembling approach to medium-term probabilistic load forecasting which ranked second out of 73 competitors in the defined data track of the GEFCom2017 qualifying match. In addition to being accurate, the ensemble method is highly scalable, due to the fact that it had to be applied to nine quantiles in ten zones and for six rounds. Candidate forecasts were generated using random settings for input data, covariates, and learning algorithms. The best candidate forecasts were averaged to create the final forecast, with the number of candidate forecasts being chosen based on their accuracy in similar validation periods.  相似文献   

10.
When forecasting time series in a hierarchical configuration, it is necessary to ensure that the forecasts reconcile at all levels. The 2017 Global Energy Forecasting Competition (GEFCom2017) focused on addressing this topic. Quantile forecasts for eight zones and two aggregated zones in New England were required for every hour of a future month. This paper presents a new methodology for forecasting quantiles in a hierarchy which outperforms a commonly-used benchmark model. A simulation-based approach was used to generate demand forecasts. Adjustments were made to each of the demand simulations to ensure that all zonal forecasts reconciled appropriately, and a weighted reconciliation approach was implemented to ensure that the bottom-level zonal forecasts summed correctly to the aggregated zonal forecasts. We show that reconciling in this manner improves the forecast accuracy. A discussion of the results and modelling performances is presented, and brief reviews of hierarchical time series forecasting and gradient boosting are also included.  相似文献   

11.
Team QUINKAN competed in the GEFCom2017 final match of hierarchical probabilistic load forecasting by adopting the quantile regression method using the R package quantreg. The weather stations were clustered into 11 groups, from which an optimal one was chosen for each load meter using the boosting method. The load meter records were cleaned and/or supplemented by various methods in order to secure robust quantile predictions. The variation in the regression formulas was kept as small as possible by introducing measures for suppressing prediction instability, although special formulas were employed for loading meters that were of an industrial nature. Several procedures were applied to help improve the accuracy, such as the smoothing of season transitions, coarse graining of the relative humidity, the use of load-oriented day-type definition, the averaging of weather data, and outlier removal.  相似文献   

12.
Electric load forecasting is a crucial part of business operations in the energy industry. Various load forecasting methods and techniques have been proposed and tested. With growing concerns about cybersecurity and malicious data manipulations, an emerging topic is to develop robust load forecasting models. In this paper, we propose a robust support vector regression (SVR) model to forecast the electricity demand under data integrity attacks. We first introduce a weight function to calculate the relative importance of each observation in the load history. We then construct a weighted quadratic surface SVR model. Some theoretical properties of the proposed model are derived. Extensive computational experiments are based on the publicly available data from Global Energy Forecasting Competition 2012 and ISO New England. To imitate data integrity attacks, we have deliberately increased or decreased the historical load data. Finally, the computational results demonstrate better accuracy of the proposed robust model over other recently proposed robust models in the load forecasting literature.  相似文献   

13.
秦晋栋 《物流科技》2011,34(4):41-44
针对2002~2009年武汉市物流需求的数据,采用灰色GM 1,1模型和多项式拟合模型两种单项预测模型对数据进行建模预测。并结合组合预测理论,采用基于IOWA算子的组合预测模型进行预测,结果表明基于诱导有序加权平均算子的组合预测模型的预测精度明显高于两种单项预测方法,说明了该方法用于物流需求预测的可行性和有效性,并在此基础上对2010~2012年的武汉市物流需求作出预测。  相似文献   

14.
As the internet’s footprint continues to expand, cybersecurity is becoming a major concern for both governments and the private sector. One such cybersecurity issue relates to data integrity attacks. This paper focuses on the power industry, where the forecasting processes rely heavily on the quality of the data. Data integrity attacks are expected to harm the performances of forecasting systems, which will have a major impact on both the financial bottom line of power companies and the resilience of power grids. This paper reveals the effect of data integrity attacks on the accuracy of four representative load forecasting models (multiple linear regression, support vector regression, artificial neural networks, and fuzzy interaction regression). We begin by simulating some data integrity attacks through the random injection of some multipliers that follow a normal or uniform distribution into the load series. Then, the four aforementioned load forecasting models are used to generate one-year-ahead ex post point forecasts in order to provide a comparison of their forecast errors. The results show that the support vector regression model is most robust, followed closely by the multiple linear regression model, while the fuzzy interaction regression model is the least robust of the four. Nevertheless, all four models fail to provide satisfying forecasts when the scale of the data integrity attacks becomes large. This presents a serious challenge to both load forecasters and the broader forecasting community: the generation of accurate forecasts under data integrity attacks. We construct our case study using the publicly-available data from Global Energy Forecasting Competition 2012. At the end, we also offer an overview of potential research topics for future studies.  相似文献   

15.
This paper analyses the real-time forecasting performance of the New Keynesian DSGE model of Galí, Smets and Wouters (2012), estimated on euro area data. It investigates the extent to which the inclusion of forecasts of inflation, GDP growth and unemployment by professional forecasters improve the forecasting performance. We consider two approaches for conditioning on such information. Under the “noise” approach, the mean professional forecasts are assumed to be noisy indicators of the rational expectations forecasts implied by the DSGE model. Under the “news” approach, it is assumed that the forecasts reveal the presence of expected future structural shocks in line with those estimated in the past. The forecasts of the DSGE model are compared with those from a Bayesian VAR model, an AR(1) model, a sample mean and a random walk.  相似文献   

16.
We examine how the accuracy of real‐time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest‐available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple‐vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper studies performance of factor-based forecasts using differenced and nondifferenced data. Approximate variances of forecasting errors from the two forecasts are derived and compared. It is reported that the forecast using nondifferenced data tends to be more accurate than that using differenced data. This paper conducts simulations to compare root mean squared forecasting errors of the two competing forecasts. Simulation results indicate that forecasting using nondifferenced data performs better. The advantage of using nondifferenced data is more pronounced when a forecasting horizon is long and the number of factors is large. This paper applies the two competing forecasting methods to 68 I(1) monthly US macroeconomic variables across a range of forecasting horizons and sampling periods. We also provide detailed forecasting analysis on US inflation and industrial production. We find that forecasts using nondifferenced data tend to outperform those using differenced data.  相似文献   

18.
This report discusses methods for forecasting hourly loads of a US utility as part of the load forecasting track of the Global Energy Forecasting Competition 2012 hosted on Kaggle. The methods described (gradient boosting machines and Gaussian processes) are generic machine learning/regression algorithms, and few domain-specific adjustments were made. Despite this, the algorithms were able to produce highly competitive predictions, which can hopefully inspire more refined techniques to compete with state-of-the-art load forecasting methodologies.  相似文献   

19.
Modeling and forecasting international migration are significant research areas since migration forecasts are vital in decision making and policy design regarding economy, security, society, and resource allocation. The methods for modeling and forecasting migration rely on strict subjective or statistical assumptions which may not always be met. In addition, lack of a universally accepted definition of the term “migrant” and the ambiguities in data due to recording and collection systems result in inconsistencies and vagueness in migration modeling. Considering these, in this paper, a fuzzy bi-level age-specific migration modeling method is proposed. The bi-level structure embedded in the model makes use of the well-known Lee-Carter method as well as fuzzy regression, singular value decomposition technique, and hierarchical clustering to reflect the general characteristics of the country of concern together with the distinct emigration and immigration behaviors of the age groups. Bayesian time series models are fitted to the time-variant fuzzy parameters obtained through the proposed method to forecast future migration values. The proposed method is applied on female and male age-specific emigration and immigration counts of Finland for 1990–2010 period and Germany for 1995–2012 period, and the future values are forecasted for 2011–2025 and 2013–2025 respectively. The method is compared with an existing Bayesian approach and the numerical findings display that the proposed fuzzy method is superior to the existing one in modeling and forecasting age-specific migration values within significantly narrower prediction intervals.  相似文献   

20.
This paper presents a Bayesian model averaging regression framework for forecasting US inflation, in which the set of predictors included in the model is automatically selected from a large pool of potential predictors and the set of regressors is allowed to change over time. Using real‐time data on the 1960–2011 period, this model is applied to forecast personal consumption expenditures and gross domestic product deflator inflation. The results of this forecasting exercise show that, although it is not able to beat a simple random‐walk model in terms of point forecasts, it does produce superior density forecasts compared with a range of alternative forecasting models. Moreover, a sensitivity analysis shows that the forecasting results are relatively insensitive to prior choices and the forecasting performance is not affected by the inclusion of a very large set of potential predictors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号