共查询到10条相似文献,搜索用时 0 毫秒
1.
We develop and test a fast and accurate semi‐analytical formula for single‐name default swaptions in the context of a shifted square root jump diffusion (SSRJD) default intensity model. The model can be calibrated to the CDS term structure and a few default swaptions, to price and hedge other credit derivatives consistently. We show with numerical experiments that the model implies plausible volatility smiles. 相似文献
2.
A simple graphical model for correlated defaults is proposed, with explicit formulas for the loss distribution. Algebraic geometry techniques are employed to show that this model is well posed for default dependence: it represents any given marginal distribution for single firms and pairwise correlation matrix. These techniques also provide a calibration algorithm based on maximum likelihood estimation. Finally, the model is compared with standard normal copula model in terms of tails of the loss distribution and implied correlation smile. 相似文献
3.
We develop two novel approaches to solving for the Laplace transform of a time‐changed stochastic process. We discard the standard assumption that the background process () is Lévy. Maintaining the assumption that the business clock () and the background process are independent, we develop two different series solutions for the Laplace transform of the time‐changed process . In fact, our methods apply not only to Laplace transforms, but more generically to expectations of smooth functions of random time. We apply the methods to introduce stochastic time change to the standard class of default intensity models of credit risk, and show that stochastic time‐change has a very large effect on the pricing of deep out‐of‐the‐money options on credit default swaps. 相似文献
4.
LARGE DEVIATIONS IN MULTIFACTOR PORTFOLIO CREDIT RISK 总被引:2,自引:0,他引:2
The measurement of portfolio credit risk focuses on rare but significant large-loss events. This paper investigates rare event asymptotics for the loss distribution in the widely used Gaussian copula model of portfolio credit risk. We establish logarithmic limits for the tail of the loss distribution in two limiting regimes. The first limit examines the tail of the loss distribution at increasingly high loss thresholds; the second limiting regime is based on letting the individual loss probabilities decrease toward zero. Both limits are also based on letting the size of the portfolio increase. Our analysis reveals a qualitative distinction between the two cases: in the rare-default regime, the tail of the loss distribution decreases exponentially, but in the large-threshold regime the decay is consistent with a power law. This indicates that the dependence between defaults imposed by the Gaussian copula is qualitatively different for portfolios of high-quality and lower-quality credits. 相似文献
5.
In this work, we consider three problems of the standard market approach to credit index options pricing: the definition of the index spread is not valid in general, the considered payoff leads to a pricing which is not always defined, and the candidate numeraire for defining a pricing measure is not strictly positive, which leads to a nonequivalent pricing measure. We give a solution to the three problems, based on modeling the flow of information through a suitable subfiltration. With this we consistently take into account the possibility of default of all names in the portfolio, that is neglected in the standard market approach. We show on market inputs that, while the pricing difference can be negligible in normal market conditions, it can become highly relevant in stressed market conditions, like the situation caused by the credit crunch. 相似文献
6.
Monotonicities in a Markov Chain Model for Valuing Corporate Bonds Subject to Credit Risk 总被引:1,自引:0,他引:1
Masaaki Kijima 《Mathematical Finance》1998,8(3):229-247
In recent years, it has become common to use a Markov chain model to describe the dynamics of a firm's credit rating as an indicator of the likelihood of default. Such a model can be used not only for describing the dynamics but also for valuing risky discount bonds. The aim of this paper is to explain how the Markov chain model leads to the known empirical findings such that prior rating changes carry predictive power for the direction of future rating changes and a firm with low (high, respectively) credit rating is more likely to be upgraded (downgraded) conditional on survival as the time horizon lengthens. The model will also explain practically plausible statements such as that bond prices as well as credit risk spreads would be ordered according to their credit qualities. Stochastic monotonicities of absorbing Markov chains play a prominent role in these issues. 相似文献
7.
We propose the eigenfunction expansion method for pricing options in quadratic term structure models. The eigenvalues, eigenfunctions, and adjoint functions are calculated using elements of the representation theory of Lie algebras not only in the self-adjoint case, but in non-self-adjoint case as well; the eigenfunctions and adjoint functions are expressed in terms of Hermite polynomials. We demonstrate that the method is efficient for pricing caps, floors, and swaptions, if time to maturity is 1 year or more. We also consider subordination of the same class of models, and show that in the framework of the eigenfunction expansion approach, the subordinated models are (almost) as simple as pure Gaussian models. We study the dependence of Black implied volatilities and option prices on the type of non-Gaussian innovations. 相似文献
8.
In this paper, we build a bridge between different reduced‐form approaches to pricing defaultable claims. In particular, we show how the well‐known formulas by Duffie, Schroder, and Skiadas and by Elliott, Jeanblanc, and Yor are related. Moreover, in the spirit of Collin Dufresne, Hugonnier, and Goldstein, we propose a simple pricing formula under an equivalent change of measure. Two processes will play a central role: the hazard process and the martingale hazard process attached to a default time. The crucial step is to understand the difference between them, which has been an open question in the literature so far. We show that pseudo‐stopping times appear as the most general class of random times for which these two processes are equal. We also show that these two processes always differ when τ is an honest time, providing an explicit expression for the difference. Eventually we provide a solution to another open problem: we show that if τ is an arbitrary random (default) time such that its Azéma's supermartingale is continuous, then τ avoids stopping times. 相似文献
9.
This paper develops a novel class of hybrid credit‐equity models with state‐dependent jumps, local‐stochastic volatility, and default intensity based on time changes of Markov processes with killing. We model the defaultable stock price process as a time‐changed Markov diffusion process with state‐dependent local volatility and killing rate (default intensity). When the time change is a Lévy subordinator, the stock price process exhibits jumps with state‐dependent Lévy measure. When the time change is a time integral of an activity rate process, the stock price process has local‐stochastic volatility and default intensity. When the time change process is a Lévy subordinator in turn time changed with a time integral of an activity rate process, the stock price process has state‐dependent jumps, local‐stochastic volatility, and default intensity. We develop two analytical approaches to the pricing of credit and equity derivatives in this class of models. The two approaches are based on the Laplace transform inversion and the spectral expansion approach, respectively. If the resolvent (the Laplace transform of the transition semigroup) of the Markov process and the Laplace transform of the time change are both available in closed form, the expectation operator of the time‐changed process is expressed in closed form as a single integral in the complex plane. If the payoff is square integrable, the complex integral is further reduced to a spectral expansion. To illustrate our general framework, we time change the jump‐to‐default extended constant elasticity of variance model of Carr and Linetsky (2006) and obtain a rich class of analytically tractable models with jumps, local‐stochastic volatility, and default intensity. These models can be used to jointly price equity and credit derivatives. 相似文献
10.
This paper presents a novel method to price discretely monitored single- and double-barrier options in Lévy process-based models. The method involves a sequential evaluation of Hilbert transforms of the product of the Fourier transform of the value function at the previous barrier monitoring date and the characteristic function of the (Esscher transformed) Lévy process. A discrete approximation with exponentially decaying errors is developed based on the Whittaker cardinal series (Sinc expansion) in Hardy spaces of functions analytic in a strip. An efficient computational algorithm is developed based on the fast Hilbert transform that, in turn, relies on the FFT-based Toeplitz matrix–vector multiplication. Our method also provides a natural framework for credit risk applications, where the firm value follows an exponential Lévy process and default occurs at the first time the firm value is below the default barrier on one of a discrete set of monitoring dates. 相似文献