首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
运用数理统计的知识,研究了水工结构可靠度功能函数正态分布在一个或者多个参数的统计特性未知情况下可靠指标的点估计值.同时对可靠指标估计值的无偏性以及一致性进行了一定程度的探讨.并对可靠指标点估计值运用进行了研究,以便说明该方法对解决实际工程问题的可行性及有效性.  相似文献   

2.
运用数理统计的知识,研究了水工结构可靠度功能函数正态分布在一个或者多个参数的统计特性未知情况下可靠指标的点估计值。同时对可靠指标估计值的无偏性以及一致性进行了一定程度的探讨。并对可靠指标点估计值运用进行了研究,以便说明该方法对解决实际工程问题的可行性及有效性。  相似文献   

3.
空间动态面板模型拟极大似然估计的渐近效率改进   总被引:2,自引:0,他引:2  
Lee和Yu(2008)研究了一类同时带个体与时间固定效应的空间动态面板模型的拟极大似然估计量的大样本性质.本文说明当扰动项非正态时,拟极大似然估计量的渐近效率可以被进一步提高.为此,我们构造了一组合待定矩阵且形式一般的矩条件以用来包含对数似然函数一阶条件的特殊形式.从无冗余矩条件的角度,选取最优待定矩阵得到了最佳广义矩估计量.本文证明了当扰动项正态分布时,最佳广义矩估计量和拟极大似然估计量渐近等价;当扰动项非正态分布时,广义矩估计量具有比拟极大似然估计量更高的渐近效率.Monte Carlo实验结果与本文的理论预期一致.  相似文献   

4.
在线性参数空间滞后模型中,解释变量的系数一般假设为固定常数,本文首先放松了这种假设,将解释变量的系数设定为某一变量的未知函数,提出一类全新的半参数变系数空间滞后模型;其次导出了该模型的截面极大似然估计,并证明了该估计的一致性;最后用蒙特卡洛数值模拟方法考察了该估计在小样本条件下的性质,数值模拟结果显示我们提出的估计方法在小样本条件下依然有优良的表现。  相似文献   

5.
张丽丽 《价值工程》2011,30(30):211-211
本文通过两个具体例题表明当连续型总体可能的取值范围不是(-∞,+∞)时,利用第一种似然函数的定义解决点估计问题,学生不仅能够很容易地掌握最大似然估计法,同时对样本来自总体且估计离不开样本这一统计思想加深了理解。  相似文献   

6.
孟俊才  贺瑞缠 《价值工程》2011,30(32):297-298
文章讨论了样本数据缺失情形下泊松过程的强度估计和检验问题。用极大似然估计、矩估计法和最小二乘估计法对强度进行估计,分别得出了极大似然估计强度的迭代方法,矩估计值及最小二乘估计值。证明了矩估计值和最小二乘估计值的无偏性和相合性,导出了其统计量的极限分布。最后,对两个Poisson过程的差异进行了假设检验同时给出渐近置信区间。  相似文献   

7.
贺飞燕 《价值工程》2006,25(8):167-168
本文在普通似然及经验似然情况下,分别对数据无结点和有结点的情况做了计算,得出在普通似然及经验似然问题中,有结点与无结点情况完全相同的结论。  相似文献   

8.
有效价差的极大似然估计   总被引:1,自引:0,他引:1  
有效价差是刻画金融资产交易成本的一种重要度量。本文基于Roll的价格模型,利用对数价格极差分布的近似正态特征,提出了一种有效价差的近似极大似然估计,并通过数值模拟比较了这一新的估计与以往文献中提出的Roll的协方差估计、贝叶斯估计以及High-Low估计在各种不同状况下的精度。模拟的结果表明,无论是在连续交易的理想状态还是交易不连续且价格不能被完全观测到的非理想状态下,极大似然估计和High-Low估计的精度均高于协方差和贝叶斯估计;当波动率相对较小的时候,极大似然估计的精度优于High-Low估计;另外,在非理想情形下,极大似然估计要比High-Low估计更加稳健。  相似文献   

9.
Logistic回归是计量经济学中应用最广的离散选择模型。当变量个数较多时,极大似然估计解释性较差,为此本文基于新的惩罚函数ArctanLASSO,给出Logistic回归的一种非凸惩罚似然估计进行参数估计和变量选取,并证明了估计量的n1/2相合性和Oracle性质。本文结合二阶近似处理、LLA方法和梯度下降法给出估计算法,并通过最小化BIC准则对正则化参数进行选取。模拟数据分析显示,当样本量较大时,该方法在参数估计和变量选取两个方面都优于传统的LASSO、SCAD和MCP方法,样本量较小时,该方法同样具有很大优势。实际数据分析表明,该方法很好地权衡了拟合程度和非零系数的选择,是最优的备选模型,具有重要的实际意义。  相似文献   

10.
荆源 《价值工程》2011,30(26):315-315
讨论了定数截尾样本下,指数分布环境因子的极大似然估计和区间估计,为研究估计的精度,运用随机模拟方法,对环境因子的置信区间的精度进行了讨论。  相似文献   

11.
L. Nie 《Metrika》2006,63(2):123-143
Generalized linear and nonlinear mixed-effects models are used extensively in biomedical, social, and agricultural sciences. The statistical analysis of these models is based on the asymptotic properties of the maximum likelihood estimator. However, it is usually assumed that the maximum likelihood estimator is consistent, without providing a proof. A rigorous proof of the consistency by verifying conditions from existing results can be very difficult due to the integrated likelihood. In this paper, we present some easily verifiable conditions for the strong consistency of the maximum likelihood estimator in generalized linear and nonlinear mixed-effects models. Based on this result, we prove that the maximum likelihood estimator is consistent for some frequently used models such as mixed-effects logistic regression models and growth curve models.  相似文献   

12.
Several authors have proposed stochastic and non‐stochastic approximations to the maximum likelihood estimate (MLE) for Gibbs point processes in modelling spatial point patterns with pairwise interactions. The approximations are necessary because of the difficulty of evaluating the normalizing constant. In this paper, we first provide a review of methods which yield crude approximations to the MLE. We also review methods based on Markov chain Monte Carlo techniques for which exact MLE has become feasible. We then present a comparative simulation study of the performance of such methods of estimation based on two simulation techniques, the Gibbs sampler and the Metropolis‐Hastings algorithm, carried out for the Strauss model.  相似文献   

13.
Since the work of Little and Rubin (1987) not substantial advances in the analysisof explanatory regression models for incomplete data with missing not at randomhave been achieved, mainly due to the difficulty of verifying the randomness ofthe unknown data. In practice, the analysis of nonrandom missing data is donewith techniques designed for datasets with random or completely random missingdata, as complete case analysis, mean imputation, regression imputation, maximumlikelihood or multiple imputation. However, the data conditions required to minimizethe bias derived from an incorrect analysis have not been fully determined. In thepresent work, several Monte Carlo simulations have been carried out to establishthe best strategy of analysis for random missing data applicable in datasets withnonrandom missing data. The factors involved in simulations are sample size,percentage of missing data, predictive power of the imputation model and existenceof interaction between predictors. The results show that the smallest bias is obtainedwith maximum likelihood and multiple imputation techniques, although with lowpercentages of missing data, absence of interaction and high predictive power ofthe imputation model (frequent data structures in research on child and adolescentpsychopathology) acceptable results are obtained with the simplest regression imputation.  相似文献   

14.
Abstract

This paper discusses the maximum likelihood estimator of a general unbalanced spatial random effects model with normal disturbances, assuming that some observations are missing at random. Monte Carlo simulations show that the maximum likelihood estimator for unbalanced panels performs well and that missing observations affect mainly the root mean square error. As expected, these estimates are less efficient than those based on the unobserved balanced model, especially if the share of missing observations is large or spatial autocorrelation in the error terms is pronounced.

Estimation de vraisemblance maximale d'un modèle général d'effets aléatoires spatiaux déséquilibré: une étude Monte Carlo

RÉSUMÉ La présente communication se penche sur l'estimateur du maximum de vraisemblance d'un modèle général d'effets aléatoires spatiaux déséquilibré avec des perturbations normales, en supposant l'absence aléatoire de certaines observations. Des simulations de Monte Carlo montrent que des groupes déséquilibrés se comporte bien, et que les observations manquantes affectent principalement l'erreur de la moyenne quadratique. Comme prévu, ces évaluations sont moins efficaces que celles qui sont basées sur le modèle équilibré non observé, notamment si la part des observations manquantes est importantes, ou l'on déclare une autocorrélation spatiale dans les termes d'erreur.

Estimación de la probabilidad máxima de un modelo espacial general desequilibrado de efectos al azar: un estudio de Monte Carlo

RÉSUMÉN Este trabajo discute el estimador de probabilidad máxima de un modelo espacial general desequilibrado de efectos al azar con alteraciones normales, suponiendo que faltan algunas observaciones al azar. Las simulaciones de Monte Carlo muestran que el estimador de probabilidad máxima para los paneles desequilibrados funciona satisfactoriamente, y que las observaciones omisas afectan principalmente al error de la media cuadrática. Como se suponía, estas estimaciones son menos eficientes que las basadas en el modelo equilibrado inadvertido, especialmente si la cantidad de omisiones es grande/o la autocorrelación en los términos de error es pronunciada.

  相似文献   

15.
In many surveys, imputation procedures are used to account for non‐response bias induced by either unit non‐response or item non‐response. Such procedures are optimised (in terms of reducing non‐response bias) when the models include covariates that are highly predictive of both response and outcome variables. To achieve this, we propose a method for selecting sets of covariates used in regression imputation models or to determine imputation cells for one or more outcome variables, using the fraction of missing information (FMI) as obtained via a proxy pattern‐mixture (PMM) model as the key metric. In our variable selection approach, we use the PPM model to obtain a maximum likelihood estimate of the FMI for separate sets of candidate imputation models and look for the point at which changes in the FMI level off and further auxiliary variables do not improve the imputation model. We illustrate our proposed approach using empirical data from the Ohio Medicaid Assessment Survey and from the Service Annual Survey.  相似文献   

16.
交互效应面板模型是目前计量经济学前沿研究的热点,有着广阔的应用空间。但是对很多应用者而言,模型内的参数估计是一个非常棘手的问题。通常的Newton-Raphson算法在优化似然函数的过程中,常常会出现优化失败的情况。本文依据EM算法和MCMC算法理论,为应用研究者提供了一套获得参数估计值的流程。计算机上的试验证实两种估计方法都非常稳健可靠,并在很多情况下,差异不是很大。  相似文献   

17.
针对《数据结构》课程内容较抽象、实践性较强的特点,分析了教学实践过程中常遇到的几方面问题,并结合实际软件开发应用,提出了一些可供参考的教学思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号