首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subsampling high frequency data   总被引:1,自引:0,他引:1  
The main contribution of this paper is to propose a novel way of conducting inference for an important general class of estimators that includes many estimators of integrated volatility. A subsampling scheme is introduced that consistently estimates the asymptotic variance for an estimator, thereby facilitating inference and the construction of valid confidence intervals. The new method does not rely on the exact form of the asymptotic variance, which is useful when the latter is of complicated form. The method is applied to the volatility estimator of Aït-Sahalia et al. (2011) in the presence of autocorrelated and heteroscedastic market microstructure noise.  相似文献   

2.
This paper proposes a robustification of the test statistic of Aït-Sahalia and Jacod (2009b) for the presence of market microstructure noise in high frequency data, based on the pre-averaging method of Jacod et al. (2010). We show that the robustified statistic restores the test’s discriminating power between jumps and no jumps despite the presence of market microstructure noise in the data.  相似文献   

3.
This paper studies conditional moment restrictions that contain unknown nonparametric functions, and proposes a general method of obtaining asymptotically distribution-free tests via martingale transforms. Examples of such conditional moment restrictions are single index restrictions, partially parametric regressions, and partially parametric quantile regressions. This paper introduces a conditional martingale transform that is conditioned on the variable in the nonparametric function, and shows that we can generate distribution-free tests of various semiparametric conditional moment restrictions using this martingale transform. The paper proposes feasible martingale transforms using series estimation and establishes their asymptotic validity. Some results from a Monte Carlo simulation study are presented and discussed.  相似文献   

4.
We extend the analytical results for reduced form realized volatility based forecasting in ABM (2004) to allow for market microstructure frictions in the observed high-frequency returns. Our results build on the eigenfunction representation of the general stochastic volatility class of models developed byMeddahi (2001). In addition to traditional realized volatility measures and the role of the underlying sampling frequencies, we also explore the forecasting performance of several alternative volatility measures designed to mitigate the impact of the microstructure noise. Our analysis is facilitated by a simple unified quadratic form representation for all these estimators. Our results suggest that the detrimental impact of the noise on forecast accuracy can be substantial. Moreover, the linear forecasts based on a simple-to-implement ‘average’ (or ‘subsampled’) estimator obtained by averaging standard sparsely sampled realized volatility measures generally perform on par with the best alternative robust measures.  相似文献   

5.
6.
We introduce a functional volatility process for modeling volatility trajectories for high frequency observations in financial markets and describe functional representations and data-based recovery of the process from repeated observations. A study of its asymptotic properties, as the frequency of observed trades increases, is complemented by simulations and an application to the analysis of intra-day volatility patterns of the S&P 500 index. The proposed volatility model is found to be useful to identify recurring patterns of volatility and for successful prediction of future volatility, through the application of functional regression and prediction techniques.  相似文献   

7.
This paper addresses the problem of data errors in discrete variables. When data errors occur, the observed variable is a misclassified version of the variable of interest, whose distribution is not identified. Inferential problems caused by data errors have been conceptualized through convolution and mixture models. This paper introduces the direct misclassification approach. The approach is based on the observation that in the presence of classification errors, the relation between the distribution of the ‘true’ but unobservable variable and its misclassified representation is given by a linear system of simultaneous equations, in which the coefficient matrix is the matrix of misclassification probabilities. Formalizing the problem in these terms allows one to incorporate any prior information into the analysis through sets of restrictions on the matrix of misclassification probabilities. Such information can have strong identifying power. The direct misclassification approach fully exploits it to derive identification regions for any real functional of the distribution of interest. A method for estimating the identification regions and construct their confidence sets is given, and illustrated with an empirical analysis of the distribution of pension plan types using data from the Health and Retirement Study.  相似文献   

8.
We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial asset prices. Our estimates are based on in-fill asymptotics for directly identifying the jumps, together with Extreme Value Theory (EVT) approximations and methods-of-moments for assessing the tail decay parameters and tail dependencies. On implementing the procedures with a panel of intraday prices for a large cross-section of individual stocks and the S&P 500 market portfolio, we find that the distributions of the systematic and idiosyncratic jumps are both generally heavy-tailed and close to symmetric, and show how the jump tail dependencies deduced from the high-frequency data together with the day-to-day variation in the diffusive volatility account for the “extreme” joint dependencies observed at the daily level.  相似文献   

9.
10.
This paper investigates the properties of the well-known maximum likelihood estimator in the presence of stochastic volatility and market microstructure noise, by extending the classic asymptotic results of quasi-maximum likelihood estimation. When trying to estimate the integrated volatility and the variance of noise, this parametric approach remains consistent, efficient and robust as a quasi-estimator under misspecified assumptions. Moreover, it shares the model-free feature with nonparametric alternatives, for instance realized kernels, while being advantageous over them in terms of finite sample performance. In light of quadratic representation, this estimator behaves like an iterative exponential realized kernel asymptotically. Comparisons with a variety of implementations of the Tukey–Hanning2 kernel are provided using Monte Carlo simulations, and an empirical study with the Euro/US Dollar future illustrates its application in practice.  相似文献   

11.
We develop new methods for the estimation of time-varying risk-neutral jump tails in asset returns. In contrast to existing procedures based on tightly parameterized models, our approach imposes much fewer structural assumptions, relying on extreme-value theory approximations together with short-maturity options. The new estimation approach explicitly allows the parameters characterizing the shape of the right and the left tails to differ, and importantly for the tail shape parameters to change over time. On implementing the procedures with a panel of S&P 500 options, our estimates clearly suggest the existence of highly statistically significant temporal variation in both of the tails. We further relate this temporal variation in the shape and the magnitude of the jump tails to the underlying return variation through the formulation of simple time series models for the tail parameters.  相似文献   

12.
We provide a new theoretical framework for disentangling and estimating the sensitivity towards systematic diffusive and jump risks in the context of factor models. Our estimates of the sensitivities towards systematic risks, or betas, are based on the notion of increasingly finer sampled returns over fixed time intervals. We show consistency and derive the asymptotic distributions of our estimators. In an empirical application of the new procedures involving high-frequency data for forty individual stocks, we find that the estimated monthly diffusive and jump betas with respect to an aggregate market portfolio differ substantially for some of the stocks in the sample.  相似文献   

13.
    
A continuous time econometric modelling framework for multivariate financial market event (or ‘transactions’) data is developed in which the model is specified via the vector conditional intensity. Generalised Hawkes models are introduced that incorporate inhibitory events and dependence between trading days. Novel omnibus specification tests based on a multivariate random time change theorem are proposed. A bivariate point process model of the timing of trades and mid-quote changes is then presented for a New York Stock Exchange stock and related to the market microstructure literature. The two-way interaction of trades and quote changes in continuous time is found to be important empirically.  相似文献   

14.
Abstract

This study revisits prior research on the valuation of dividends in an accounting-based valuation framework. Using a battery of tests, we show that market value deflation is essential in market-based tests of dividend displacement and signalling because it controls for ‘stale’ information in addition to scale (size) differences across firms. For US firms, we show that after controlling for ‘stale’ information, the empirical association between dividends and market values switches from positive to negative. This switch is not explained by scale differences across firms. Further, we show that after controlling for staleness, the valuation of dividends remains positive for European firms. This result is explained by the relatively stronger association of dividends with future earnings in these settings (i.e. signalling). Lastly, our country-specific estimates of dividend valuation provide a potentially valuable index for studies aimed at examining the effects of accounting and securities regulation on information asymmetries in an international context.  相似文献   

15.
Maximization of utility implies that consumer demand systems have a Slutsky matrix which is everywhere symmetric. However, previous non- and semi-parametric approaches to the estimation of consumer demand systems do not give estimators that are restricted to satisfy this condition, nor do they offer powerful tests of this restriction. We use nonparametric modeling to test and impose Slutsky symmetry in a system of expenditure share equations over prices and expenditure. In this context, Slutsky symmetry is a set of nonlinear cross-equation restrictions on levels and derivatives of consumer demand equations. The key insight is that due to the differing convergence rates of levels and derivatives and due to the fact that the symmetry restrictions are linear in derivatives, both the test and the symmetry restricted estimator behave asymptotically as if these restrictions were (locally) linear. We establish large and finite sample properties of our methods, and show that our test has advantages over the only other comparable test. All methods we propose are implemented with Canadian micro-data. We find that our nonparametric analysis yields statistically significantly and qualitatively different results from traditional parametric estimators and tests.  相似文献   

16.
The ranking of multivariate volatility models is inherently problematic because when the unobservable volatility is substituted by a proxy, the ordering implied by a loss function may be biased with respect to the intended one. We point out that the size of the distortion is strictly tied to the level of the accuracy of the volatility proxy. We propose a generalized necessary and sufficient functional form for a class of non-metric distance measures of the Bregman type which ensure consistency of the ordering when the target is observed with noise. An application to three foreign exchange rates is provided.  相似文献   

17.
Bayesian averaging,prediction and nonnested model selection   总被引:1,自引:0,他引:1  
This paper studies the asymptotic relationship between Bayesian model averaging and post-selection frequentist predictors in both nested and nonnested models. We derive conditions under which their difference is of a smaller order of magnitude than the inverse of the square root of the sample size in large samples. This result depends crucially on the relation between posterior odds and frequentist model selection criteria. Weak conditions are given under which consistent model selection is feasible, regardless of whether models are nested or nonnested and regardless of whether models are correctly specified or not, in the sense that they select the best model with the least number of parameters with probability converging to 1. Under these conditions, Bayesian posterior odds and BICs are consistent for selecting among nested models, but are not consistent for selecting among nonnested models and possibly overlapping models. These findings have important bearing for applied researchers who are frequent users of model selection tools for empirical investigation of model predictions.  相似文献   

18.
We develop a sequential procedure to test the adequacy of jump-diffusion models for return distributions. We rely on intraday data and nonparametric volatility measures, along with a new jump detection technique and appropriate conditional moment tests, for assessing the import of jumps and leverage effects. A novel robust-to-jumps approach is utilized to alleviate microstructure frictions for realized volatility estimation. Size and power of the procedure are explored through Monte Carlo methods. Our empirical findings support the jump-diffusive representation for S&P500 futures returns but reveal it is critical to account for leverage effects and jumps to maintain the underlying semi-martingale assumption.  相似文献   

19.
20.
For tests based on nonparametric methods, power crucially depends on the dimension of the conditioning variables, and specifically decreases with this dimension. This is known as the “curse of dimensionality”. We propose a new general approach to nonparametric testing in high dimensional settings and we show how to implement it when testing for a parametric regression. The resulting test behaves against directional local alternatives almost as if the dimension of the regressors was one. It is also almost optimal against classes of one-dimensional alternatives for a suitable choice of the smoothing parameter. The test performs well in small samples compared to several other tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号