共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct two classes of smoothed empirical likelihood ratio tests for the conditional independence hypothesis by writing the null hypothesis as an infinite collection of conditional moment restrictions indexed by a nuisance parameter. One class is based on the CDF; another is based on smoother functions. We show that the test statistics are asymptotically normal under the null hypothesis and a sequence of Pitman local alternatives. We also show that the tests possess an asymptotic optimality property in terms of average power. Simulations suggest that the tests are well behaved in finite samples. Applications to some economic and financial time series indicate that our tests reveal some interesting nonlinear causal relations which the traditional linear Granger causality test fails to detect. 相似文献
2.
We propose a new nonparametric test of affiliation, a strong form of positive dependence with independence as a special, knife-edge, case. The test is consistent against all departures from the null of affiliation, and its null distribution is standard normal. Like most nonparametric tests, a sample-size dependent input parameter is needed. We provide an informal procedure for choosing the input parameter and evaluate the test’s performance using a simulation study. Our test can be used to test the fundamental assumptions of the auctions literature. We implement our test empirically using the Outer Continental Shelf (OCS) auction data. 相似文献
3.
Yoshihiko Nishiyama Kohtaro HitomiYoshinori Kawasaki Kiho Jeong 《Journal of econometrics》2011,165(1):112-127
Since the pioneering work by Granger (1969), many authors have proposed tests of causality between economic time series. Most of them are concerned only with “linear causality in mean”, or if a series linearly affects the (conditional) mean of the other series. It is no doubt of primary interest, but dependence between series may be nonlinear, and/or not only through the conditional mean. Indeed conditional heteroskedastic models are widely studied recently. The purpose of this paper is to propose a nonparametric test for possibly nonlinear causality. Taking into account that dependence in higher order moments are becoming an important issue especially in financial time series, we also consider a test for causality up to the Kth conditional moment. Statistically, we can also view this test as a nonparametric omitted variable test in time series regression. A desirable property of the test is that it has nontrivial power against T1/2-local alternatives, where T is the sample size. Also, we can form a test statistic accordingly if we have some knowledge on the alternative hypothesis. Furthermore, we show that the test statistic includes most of the omitted variable test statistics as special cases asymptotically. The null asymptotic distribution is not normal, but we can easily calculate the critical regions by simulation. Monte Carlo experiments show that the proposed test has good size and power properties. 相似文献
4.
We propose non-nested hypothesis tests for conditional moment restriction models based on the method of generalized empirical likelihood (GEL). By utilizing the implied GEL probabilities from a sequence of unconditional moment restrictions that contains equivalent information of the conditional moment restrictions, we construct Kolmogorov–Smirnov and Cramér–von Mises type moment encompassing tests. Advantages of our tests over Otsu and Whang’s (2011) tests are: (i) they are free from smoothing parameters, (ii) they can be applied to weakly dependent data, and (iii) they allow non-smooth moment functions. We derive the null distributions, validity of a bootstrap procedure, and local and global power properties of our tests. The simulation results show that our tests have reasonable size and power performance in finite samples. 相似文献
5.
6.
Marcelo C. Medeiros Michael McAleer Daniel Slottje Vicente Ramos Javier Rey-Maquieira 《Journal of econometrics》2008
In this paper we provide an alternative approach to analyze the demand for international tourism in the Balearic Islands, Spain, by using a neural network model that incorporates time-varying conditional volatility. We consider daily air passenger arrivals to Palma de Mallorca, Ibiza and Mahon, which are located in the islands of Mallorca, Ibiza and Menorca, respectively, as a proxy for international tourism demand for the Balearic Islands. Spain is a world leader in terms of total international tourist arrivals and receipts, and Mallorca is one of the most popular destinations in Spain. For tourism management and marketing, it is essential to forecast high frequency international tourist demand accurately. As it is important to provide sensible international tourism demand forecast intervals, it is also necessary to model their variances accurately. Moreover, time-varying variances provide useful information regarding the risks associated with variations in international tourist arrivals. 相似文献
7.
In this paper, we extend the classical idea of Rank estimation of parameters from homoscedastic problems to heteroscedastic problems. In particular, we define a class of rank estimators of the parameters associated with the conditional mean function of an autoregressive model through a three-steps procedure and then derive their asymptotic distributions. The class of models considered includes Engel's ARCH model and the threshold heteroscedastic model. The class of estimators includes an extension of Wilcoxon-type rank estimator. The derivation of the asymptotic distributions depends on the uniform approximation of a randomly weighted empirical process by a perturbed empirical process through a very general weight-dependent partitioning argument. 相似文献
8.
In this paper we consider the problem of semiparametric efficient estimation in conditional quantile models with time series data. We construct an M-estimator which achieves the semiparametric efficiency bound recently derived by Komunjer and Vuong (forthcoming). Our efficient M-estimator is obtained by minimizing an objective function which depends on a nonparametric estimator of the conditional distribution of the variable of interest rather than its density. The estimator is new and not yet seen in the literature. We illustrate its performance through a Monte Carlo experiment. 相似文献
9.
This paper studies conditional moment restrictions that contain unknown nonparametric functions, and proposes a general method of obtaining asymptotically distribution-free tests via martingale transforms. Examples of such conditional moment restrictions are single index restrictions, partially parametric regressions, and partially parametric quantile regressions. This paper introduces a conditional martingale transform that is conditioned on the variable in the nonparametric function, and shows that we can generate distribution-free tests of various semiparametric conditional moment restrictions using this martingale transform. The paper proposes feasible martingale transforms using series estimation and establishes their asymptotic validity. Some results from a Monte Carlo simulation study are presented and discussed. 相似文献
10.
This article proposes omnibus specification tests of parametric dynamic quantile models. In contrast to the existing procedures, we allow for a flexible specification, where a possible continuum of quantiles is simultaneously specified under fairly weak conditions on the serial dependence in the underlying data-generating process. Since the null limit distribution of tests is not pivotal, we propose a subsampling approximation of the asymptotic critical values. A Monte Carlo study shows that the asymptotic results provide good approximations for small sample sizes. Finally, an application suggests that our methodology is a powerful alternative to standard backtesting procedures in evaluating market risk. 相似文献
11.
A formal test on the Lyapunov exponent is developed to distinguish a random walk model from a chaotic system, which is based on the Nadaraya–Watson kernel estimator of the Lyapunov exponent. The asymptotic null distribution of our test statistic is free of nuisance parameter, and simply given by the range of standard Brownian motion on the unit interval. The test is consistent against the chaotic alternatives. A simulation study shows that the test performs reasonably well in finite samples. We apply our test to some of the standard macro and financial time series, finding no significant empirical evidence of chaos. 相似文献
12.
We consider a class of time series specification tests based on quadratic forms of weighted sums of residuals autocorrelations. Asymptotically distribution-free tests in the presence of estimated parameters are obtained by suitably transforming the weights, which can be optimally chosen to maximize the power function when testing in the direction of local alternatives. We discuss in detail an asymptotically optimal distribution-free alternative to the popular Box–Pierce when testing in the direction of AR or MA alternatives. The performance of the test with small samples is studied by means of a Monte Carlo experiment. 相似文献
13.
We propose a rank-test of the null hypothesis of short memory stationarity possibly after linear detrending. 相似文献
14.
This article proposes a class of joint and marginal spectral diagnostic tests for parametric conditional means and variances of linear and nonlinear time series models. The use of joint and marginal tests is motivated from the fact that marginal tests for the conditional variance may lead to misleading conclusions when the conditional mean is misspecified. The new tests are based on a generalized spectral approach and do not need to choose a lag order depending on the sample size or to smooth the data. Moreover, the proposed tests are robust to higher order dependence of unknown form, in particular to conditional skewness and kurtosis. It turns out that the asymptotic null distributions of the new tests depend on the data generating process. Hence, we implement the tests with the assistance of a wild bootstrap procedure. A simulation study compares the finite sample performance of the proposed and competing tests, and shows that our tests can play a valuable role in time series modeling. Finally, an application to the S&P 500 highlights the merits of our approach. 相似文献
15.
This paper provides a new approach to constructing confidence intervals for nonparametric drift and diffusion functions in the continuous-time diffusion model via empirical likelihood (EL). The log EL ratios are constructed through the estimating equations satisfied by the local linear estimators. Limit theories are developed by means of increasing time span and shrinking observational intervals. The results apply to both stationary and nonstationary recurrent diffusion processes. Simulations show that for both drift and diffusion functions, the new procedure performs remarkably well in finite samples and clearly dominates the conventional method in constructing confidence intervals based on asymptotic normality. An empirical example is provided to illustrate the usefulness of the proposed method. 相似文献
16.
Shih-Hsun HsuChung-Ming Kuan 《Journal of econometrics》2011,165(1):87-99
A well-known difficulty in estimating conditional moment restrictions is that the parameters of interest need not be globally identified by the implied unconditional moments. In this paper, we propose an approach to constructing a continuum of unconditional moments that can ensure parameter identifiability. These unconditional moments depend on the “instruments” generated from a “generically comprehensively revealing” function, and they are further projected along the exponential Fourier series. The objective function is based on the resulting Fourier coefficients, from which an estimator can be easily computed. A novel feature of our method is that the full continuum of unconditional moments is incorporated into each Fourier coefficient. We show that, when the number of Fourier coefficients in the objective function grows at a proper rate, the proposed estimator is consistent and asymptotically normally distributed. An efficient estimator is also readily obtained via the conventional two-step GMM method. Our simulations confirm that the proposed estimator compares favorably with that of Domínguez and Lobato (2004, Econometrica) in terms of bias, standard error, and mean squared error. 相似文献
17.
In a recent paper López et al. (2010) introduce a new test for spatial independence. The test is a generalization of tests developed in Matilla-García (2007) and Matilla-García and Marín (2008). The results derived need some clarification. 相似文献
18.
The generalised method of moments estimator may be substantially biased in finite samples, especially so when there are large numbers of unconditional moment conditions. This paper develops a class of first-order equivalent semi-parametric efficient estimators and tests for conditional moment restrictions models based on a local or kernel-weighted version of the Cressie–Read power divergence family of discrepancies. This approach is similar in spirit to the empirical likelihood methods of Kitamura et al. [2004. Empirical likelihood-based inference in conditional moment restrictions models. Econometrica 72, 1667–1714] and Tripathi and Kitamura [2003. Testing conditional moment restrictions. Annals of Statistics 31, 2059–2095]. These efficient local methods avoid the necessity of explicit estimation of the conditional Jacobian and variance matrices of the conditional moment restrictions and provide empirical conditional probabilities for the observations. 相似文献
19.
To study the influence of a bandwidth parameter in inference with conditional moments, we propose a new class of estimators and establish an asymptotic representation of our estimator as a process indexed by a bandwidth, which can vary within a wide range including bandwidths independent of the sample size. We study its behavior under misspecification. We also propose an efficient version of our estimator. We develop a procedure based on a distance metric statistic for testing restrictions on parameters as well as a bootstrap technique to account for the bandwidth’s influence. Our new methods are simple to implement, apply to non-smooth problems, and perform well in our simulations. 相似文献
20.
A versatile and robust metric entropy test of time-reversibility,and other hypotheses 总被引:1,自引:0,他引:1
We examine the performance of a metric entropy statistic as a robust test for time-reversibility (TR), symmetry, and serial dependence. It also serves as a measure of goodness-of-fit. The statistic provides a consistent and unified basis in model search, and is a powerful diagnostic measure with surprising ability to pinpoint areas of model failure. We provide empirical evidence comparing the performance of the proposed procedure with some of the modern competitors in nonlinear time-series analysis, such as robust implementations of the BDS and characteristic function-based tests of TR, along with correlation-based competitors such as the Ljung–Box Q-statistic. Unlike our procedure, each of its competitors is motivated for a different, specific, context and hypothesis. Our evidence is based on Monte Carlo simulations along with an application to several stock indices for the US equity market. 相似文献