首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops a novel class of hybrid credit‐equity models with state‐dependent jumps, local‐stochastic volatility, and default intensity based on time changes of Markov processes with killing. We model the defaultable stock price process as a time‐changed Markov diffusion process with state‐dependent local volatility and killing rate (default intensity). When the time change is a Lévy subordinator, the stock price process exhibits jumps with state‐dependent Lévy measure. When the time change is a time integral of an activity rate process, the stock price process has local‐stochastic volatility and default intensity. When the time change process is a Lévy subordinator in turn time changed with a time integral of an activity rate process, the stock price process has state‐dependent jumps, local‐stochastic volatility, and default intensity. We develop two analytical approaches to the pricing of credit and equity derivatives in this class of models. The two approaches are based on the Laplace transform inversion and the spectral expansion approach, respectively. If the resolvent (the Laplace transform of the transition semigroup) of the Markov process and the Laplace transform of the time change are both available in closed form, the expectation operator of the time‐changed process is expressed in closed form as a single integral in the complex plane. If the payoff is square integrable, the complex integral is further reduced to a spectral expansion. To illustrate our general framework, we time change the jump‐to‐default extended constant elasticity of variance model of Carr and Linetsky (2006) and obtain a rich class of analytically tractable models with jumps, local‐stochastic volatility, and default intensity. These models can be used to jointly price equity and credit derivatives.  相似文献   

2.
We first discuss some mathematical tools used to compute the intensity of a single jump process, in its canonical filtration. In the second part, we try to clarify the meaning of default and the links between the default time, the asset's filtration, and the intensity of the default time. We finally discuss some examples.  相似文献   

3.
Motivated by analytical valuation of timer options (an important innovation in realized variance‐based derivatives), we explore their novel mathematical connection with stochastic volatility and Bessel processes (with constant drift). Under the Heston (1993) stochastic volatility model, we formulate the problem through a first‐passage time problem on realized variance, and generalize the standard risk‐neutral valuation theory for fixed maturity options to a case involving random maturity. By time change and the general theory of Markov diffusions, we characterize the joint distribution of the first‐passage time of the realized variance and the corresponding variance using Bessel processes with drift. Thus, explicit formulas for a useful joint density related to Bessel processes are derived via Laplace transform inversion. Based on these theoretical findings, we obtain a Black–Scholes–Merton‐type formula for pricing timer options, and thus extend the analytical tractability of the Heston model. Several issues regarding the numerical implementation are briefly discussed.  相似文献   

4.
In this paper, we extend the 3/2 model for VIX studied by Goard and Mazur and introduce the generalized 3/2 and 1/2 classes of volatility processes. Under these models, we study the pricing of European and American VIX options, and for the latter, we obtain an early exercise premium representation using a free‐boundary approach and local time‐space calculus. The optimal exercise boundary for the volatility is obtained as the unique solution to an integral equation of Volterra type. We also consider a model mixing these two classes and formulate the corresponding optimal stopping problem in terms of the observed factor process. The price of an American VIX call is then represented by an early exercise premium formula. We show the existence of a pair of optimal exercise boundaries for the factor process and characterize them as the unique solution to a system of integral equations.  相似文献   

5.
In a companion paper, we studied a control problem related to swing option pricing in a general non‐Markovian setting. The main result there shows that the value process of this control problem can uniquely be characterized in terms of a first‐order backward stochastic partial differential equation (BSPDE) and a pathwise differential inclusion. In this paper, we additionally assume that the cash flow process of the swing option is left‐continuous in expectation. Under this assumption, we show that the value process is continuously differentiable in the space variable that represents the volume in which the holder of the option can still exercise until maturity. This gives rise to an existence and uniqueness result for the corresponding BSPDE in a classical sense. We also explicitly represent the space derivative of the value process in terms of a nonstandard optimal stopping problem over a subset of predictable stopping times. This representation can be applied to derive a dual minimization problem in terms of martingales.  相似文献   

6.
In this paper, we present an algorithm for pricing barrier options in one‐dimensional Markov models. The approach rests on the construction of an approximating continuous‐time Markov chain that closely follows the dynamics of the given Markov model. We illustrate the method by implementing it for a range of models, including a local Lévy process and a local volatility jump‐diffusion. We also provide a convergence proof and error estimates for this algorithm.  相似文献   

7.
This paper uses a reduced‐form approach to derive a closed‐form pricing formula for defaultable bonds. The authors specify the default hazard rate as an affine function of multiple variables which follow the Lévy jump‐diffusion processes. Because such specification allows greater flexibility in the generation of a valid probability of default, their pricing model should be more accurate than the valuation models in traditional studies, which ignore the jump effects. This paper also proposes a new method for estimating the parameters in a Lévy Jump‐diffusion process. The real data from the Taiwanese bond market are used to illustrate how their model can be applied in practical situations. The authors compare the pricing results for the influential variables with no jump effects, with jump magnitudes following the normal distribution, and with jump magnitudes following the gamma distribution. The results reveal that the predictive ability is the best for the model with the jump components. The valuation model shown in this paper should help portfolio managers more accurately price defaultable bonds and more effectively hedge their portfolio holdings.  相似文献   

8.
In this paper, we study the excursions of Bessel and Cox–Ingersoll–Ross (CIR) processes with dimensions . We obtain densities for the last passage times and meanders of the processes. Using these results, we prove a variation of the Azéma martingale for the Bessel and CIR processes based on excursion theory. Furthermore, we study their Parisian excursions, and generalize previous results on the Parisian stopping time of Brownian motion to that of the Bessel and CIR processes. We obtain explicit formulas and asymptotic results for the densities of the Parisian stopping times, and develop exact simulation algorithms to sample the Parisian stopping times of Bessel and CIR processes. We introduce a new type of bond, the zero‐coupon Parisian bond. The buyer of such a bond is betting against zero interest rates, while the seller is effectively hedging against a period where interest rates fluctuate around 0. Using our results, we propose two methods for pricing these bonds and provide numerical examples.  相似文献   

9.
We consider a financial framework with two levels of information: the public information generated by the financial assets, and a larger flow of information that contains additional knowledge about a random time. This random time can represent many economic and financial settings, such as the default time of a firm for credit risk, and the death time of an insured for life insurance. As the random time cannot be seen before its occurrence, the progressive enlargement of filtration seems tailor‐fit to model the larger flow of information that incorporates both the public flow and the information about the random time. In this context, our interest focuses on the following challenges: (a) How to single out the various risks coming from the financial assets, the random time, and their correlations? (b) How these risks interplay and lead to the formation of any risk in the larger flow of information? It is clear that understanding how risks build‐up and interact, when one enlarges the flow of information, is vital for an efficient risk management and derivatives' evaluation in those informational markets. Our answers to these challenges are full and complete no matter what the model for the random time is and no matter how the random time is related to the public flow. In fact, we introduce “pure default” risks, and quantify and classify these risks afterward. Then we elaborate our martingale representation results, which state that any martingale in the large filtration stopped at the random time can be decomposed into orthogonal local martingales (i.e., local martingales whose product remains a local martingale). This constitutes our first principal contribution, while our second contribution consists in evaluating various defaultable securities according to the recovery policy, within our financial setting that encompasses any default model, using a martingale “basis.” Our pricing formulas explain the impact of various recovery policies on securities and determine the types of pure default risk they entail.  相似文献   

10.
The two main approaches in credit risk are the structural approach pioneered by Merton and the reduced‐form framework proposed by Jarrow and Turnbull and by Artzner and Delbaen. The goal of this paper is to provide a unified view on both approaches. This is achieved by studying reduced‐form approaches under weak assumptions. In particular, we do not assume the global existence of a default intensity and allow default at fixed or predictable times, such as coupon payment dates, with positive probability. In this generalized framework, we study dynamic term structures prone to default risk following the forward‐rate approach proposed by Heath, Jarrow, and Morton. It turns out that previously considered models lead to arbitrage possibilities when default can happen at a predictable time. A suitable generalization of the forward‐rate approach contains an additional stochastic integral with atoms at predictable times and necessary and sufficient conditions for an appropriate no‐arbitrage condition are given. For efficient implementations, we develop a new class of affine models that do not satisfy the standard assumption of stochastic continuity. The chosen approach is intimately related to the theory of enlargement of filtrations, for which we provide an example by means of filtering theory where the Azéma supermartingale contains upward and downward jumps, both at predictable and totally inaccessible stopping times.  相似文献   

11.
We develop an arbitrage‐free valuation framework for bilateral counterparty risk, where collateral is included with possible rehypothecation. We show that the adjustment is given by the sum of two option payoff terms, where each term depends on the netted exposure, i.e., the difference between the on‐default exposure and the predefault collateral account. We then specialize our analysis to credit default swaps (CDS) as underlying portfolios, and construct a numerical scheme to evaluate the adjustment under a doubly stochastic default framework. In particular, we show that for CDS contracts a perfect collateralization cannot be achieved, even under continuous collateralization, if the reference entity’s and counterparty’s default times are dependent. The impact of rehypothecation, collateral margining frequency, and default correlation‐induced contagion is illustrated with numerical examples.  相似文献   

12.
Motivated by the European sovereign debt crisis, we propose a hybrid sovereign default model that combines an accessible part taking into account the evolution of the sovereign solvency and the impact of critical political events, and a totally inaccessible part for the idiosyncratic credit risk. We obtain closed‐form formulas for the probability that the default occurs at critical political dates in a Markovian setting. Moreover, we introduce a generalized density framework for the hybrid default time and deduce the compensator process of default. Finally, we apply the hybrid model and the generalized density to the valuation of sovereign bonds and explain the significant jumps in long‐term government bond yields during the sovereign crisis.  相似文献   

13.
In this paper, we study the dual representation for generalized multiple stopping problems, hence the pricing problem of general multiple exercise options. We derive a dual representation which allows for cash flows which are subject to volume constraints modeled by integer‐valued adapted processes and refraction periods modeled by stopping times. As such, this extends the works by Schoenmakers ( 2012 ), Bender ( 2011a ), Bender ( 2011b ), Aleksandrov and Hambly ( 2010 ), and Meinshausen and Hambly ( 2004 ) on multiple exercise options, which either take into consideration a refraction period or volume constraints, but not both simultaneously. We also allow more flexible cash flow structures than the additive structure in the above references. For example, some exponential utility problems are covered by our setting. We supplement the theoretical results with an explicit Monte Carlo algorithm for constructing confidence intervals for prices of multiple exercise options and illustrate it with a numerical study on the pricing of a swing option in an electricity market.  相似文献   

14.
This study analyzes seller‐defaultable options that allow option writers to have a free‐will right to default, along with some prespecified default mechanisms. We analytically and numerically examine the pricing, hedging, defaulting, and profitability of the seller‐defaultable options, considering three possible scenarios for seller default. Analyzing the essential implications of seller‐defaultable options, we show that the option price is positively correlated with the default fine, underlying asset price, and volatility. The seller‐defaultable option's Greeks appear more complicated than those of the plain vanilla options. The likelihood of sellers defaulting increases with the underlying asset price, interest rate, volatility, and maturity time. Subject to the default mechanism, the buyers’ trading involves a trade‐off between profits and costs. © 2012 Wiley Periodicals, Inc. Jrl Fut Mark 33:129–157, 2013  相似文献   

15.
We develop two novel approaches to solving for the Laplace transform of a time‐changed stochastic process. We discard the standard assumption that the background process () is Lévy. Maintaining the assumption that the business clock () and the background process are independent, we develop two different series solutions for the Laplace transform of the time‐changed process . In fact, our methods apply not only to Laplace transforms, but more generically to expectations of smooth functions of random time. We apply the methods to introduce stochastic time change to the standard class of default intensity models of credit risk, and show that stochastic time‐change has a very large effect on the pricing of deep out‐of‐the‐money options on credit default swaps.  相似文献   

16.
CORRELATED DEFAULTS IN INTENSITY-BASED MODELS   总被引:6,自引:0,他引:6  
Fan  Yu 《Mathematical Finance》2007,17(2):155-173
This paper presents an intensity-based model of correlated defaults with application to the valuation of defaultable securities. The model assumes that the intensities of the default times are driven by common factors as well as other defaults in the system. A recursive procedure called the "total hazard construction" is used to generate default times with a broad class of correlation structures. This approach is compared to standard reduced-form models based on conditional independence as well as alternative approaches involving copula functions. Examples are given for the pricing of defaultable bonds and credit default swaps of the regular and basket type.  相似文献   

17.
This study constructs a credit derivative pricing model using economic fundamentals to evaluate CDX indices and quantify the relationship between credit conditions and the economic environment. Instead of selecting specific economic variables, numerous economic and financial variables have been condensed into a few explanatory factors to summarize the noisy economic system. The impacts on default intensity processes are then examined based on no‐arbitrage pricing constraints. The approximated results show that economic factors indicated credit problems even before the recent subprime mortgage crisis, and economic fundamentals strongly influenced credit conditions. Testing of out‐of‐sample data shows that credit evolution can be identified by dynamic explanatory factors. Consequently, the factor‐based pricing model can either facilitate the evaluation of default probabilities or manage default risks more effectively by quantifying the relationship between economic environment and credit conditions. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark  相似文献   

18.
We consider the problem of stopping a diffusion process with a payoff functional that renders the problem time‐inconsistent. We study stopping decisions of naïve agents who reoptimize continuously in time, as well as equilibrium strategies of sophisticated agents who anticipate but lack control over their future selves' behaviors. When the state process is one dimensional and the payoff functional satisfies some regularity conditions, we prove that any equilibrium can be obtained as a fixed point of an operator. This operator represents strategic reasoning that takes the future selves' behaviors into account. We then apply the general results to the case when the agents distort probability and the diffusion process is a geometric Brownian motion. The problem is inherently time‐inconsistent as the level of distortion of a same event changes over time. We show how the strategic reasoning may turn a naïve agent into a sophisticated one. Moreover, we derive stopping strategies of the two types of agent for various parameter specifications of the problem, illustrating rich behaviors beyond the extreme ones such as “never‐stopping” or “never‐starting.”  相似文献   

19.
We consider the optimal investment problem with random endowment in the presence of defaults. For an investor with constant absolute risk aversion, we identify the certainty equivalent, and compute prices for defaultable bonds and dynamic protection against default. This latter price is interpreted as the premium for a contingent credit default swap, and connects our work with earlier articles, where the investor is protected upon default. We consider a multiple risky asset model with a single default time, at which point each of the assets may jump in price. Investment opportunities are driven by a diffusion X taking values in an arbitrary region . We allow for stochastic volatility, correlation, and recovery; unbounded random endowments; and postdefault trading. We identify the certainty equivalent with a semilinear parabolic partial differential equation with quadratic growth in both function and gradient. Under minimal integrability assumptions, we show that the certainty equivalent is a classical solution. Numerical examples highlight the relationship between the factor process, market dynamics, utility‐based prices, and default insurance premium. In particular, we show that the holder of a defaultable bond has a strong incentive to short the underlying stock, even for very low default intensities.  相似文献   

20.
We present a consumption-based equilibrium framework for credit risk pricing based on the Epstein–Zin (EZ) preferences where the default time is modeled as the first hitting time of a default boundary and bond investors have imperfect/partial information about the firm value. The imperfect information is generated by the underlying observed state variables and a noisy observation process of the firm value. In addition, the consumption, the volatility, and the firm value process are modeled to follow affine diffusion processes. Using the EZ equilibrium solution as the pricing kernel, we provide an equivalent pricing measure to compute the prices of financial derivatives as discounted values of the future payoffs given the incomplete information. The price of a zero-coupon bond is represented in terms of the solutions of a stochastic partial differential equation (SPDE) and a deterministic PDE; the self-contained proofs are provided for both this representation and the well-posedness of the involved SPDE. Furthermore, this SPDE is numerically solved, which yields some insights into the relationship between the structure of the yield spreads and the model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号