共查询到20条相似文献,搜索用时 15 毫秒
1.
Charlotte Ravot Marianne Laslier Laurence Hubert‐Moy Simon Dufour Didier Le Coeur Ivan Bernez 《河流研究与利用》2020,36(6):894-906
The restoration of ecological continuity along the Sélune River (Normandy, France) involves the removal of two tall hydroelectric dams (36 m removed in 2019 and 16 m in 2021), a project without precedent in Europe. During the pre‐removal phase (2014–2018), we performed scientific monitoring of the vegetation that was colonizing alluvium in the former dam reservoir (length: 19 km; surface area: 151 ha). Our study aimed to analyse if spontaneous vegetation could ecologically restore the riparian zone and help maintain fine sediment after dam removal. We used colonization indicators related to vegetation structure, taxonomic richness and diversity, and composition. These indicators were calculated at two spatial scales (local, at a single site, and broad, along the reservoir). The aim was to (a) characterize the spontaneously established species pool; (b) analyse longitudinal patterns in vegetation colonization; and (c) assess temporal changes in the species community. Our results show that diverse plant communities have developed. Slight differences in longitudinal and lateral patterns existed; they were linked with habitat heterogeneity and the reservoir's slow pace of draining. We observed fast spontaneous terrestrialization, which has resulted in cover stabilization, decreased diversity, and the development of herbaceous riverbank communities, with very few invasive species. This finding suggests stabilization potential is high and passive ecological restoration could occur, at least locally. Further analyses focusing on functional traits could help inform future management decisions regarding revegetation on reservoir alluvium. 相似文献
2.
为全面、客观反映美国退役坝拆除的真实情况,通过文献检索和专题调研,在综述美国退役坝拆除背景及现状的基础上,分析了美国拆坝的主要原因,即环境、安全和经济因素。案例研究表明,美国拆坝旨在消除老化坝的安全风险,恢复溯河性鱼类洄游以及节省无成本效益的开支。水坝退役是水坝生命周期管理中的一个重要阶段,拆坝并不意味着不能建坝,目前水电仍然是美国最大的可再生能源电力来源。美国在水坝退役方面的理念和经验可为我国水库降等与报废管理提供借鉴。 相似文献
3.
我国降等与报废水库逐年增加,大坝退役拆除成为必然趋势。针对退役坝拆除问题,从各国拆坝数量、拆坝地区分布、拆坝原因和拆坝相关政策入手,对国内外大坝拆除现状进行分析总结,并对拆坝后对生态环境和社会经济产生的影响进行综述。研究发现国内外关于拆坝影响研究多为定性分析,缺少定量分析和一套切实可行的计算方法,且多为单因素研究,缺乏综合影响因素评估分析。由此展望未来的拆坝影响研究中应由定性分析向定量分析转变,并耦合水动力、泥沙、生物响应、水生环境等多方面因素,构建拆坝影响的综合评估体系。 相似文献
4.
Hydroelectric dams may affect anadromous fish survival and recruitment by limiting access to upstream habitats and adversely affecting quality of downstream habitats. In the Manistee River, a tributary to Lake Michigan, two hydroelectric dams potentially limit recruitment of anadromous rainbow trout (steelhead) by increasing tailrace water temperatures to levels that significantly reduce survival of young‐of‐year (YOY) fish. The objectives of this study were to determine whether proposed restoration scenarios (dam removals or a bottom withdrawal retrofit) would alter the Manistee River thermal regime and, consequently, improve wild steelhead survival and recruitment. Physical process models were used to predict Manistee River thermal regimes following each dam alteration scenario. Empirical relationships were derived from historical field surveys to quantify the effect of temperature on YOY production and potential recruitment of Manistee River steelhead. Both dam alteration scenarios lowered summer temperatures and increased steelhead recruitment by between 59% and 129%, but total recruitments were still low compared to other Great Lakes tributaries. Considering only temperature effects, bottom withdrawal provides the greatest promise for increasing natural steelhead recruitment by decreasing the likelihood of year‐class failures in the warmest summers. Results of this study may allow managers to evaluate mitigation alternatives for Manistee River dams during future relicensing negotiations, and illustrate the utility of physical process temperature models in groundwater‐fed rivers. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
5.
为研究拆坝对生态环境影响的利弊,介绍了拆坝对水文情势、泥沙输运、河道地貌、河道水质、栖息地质量及生物多样性等生态的影响,综述了拆坝后河道物理化学及重要生态特性之间响应关系的研究进展。拆坝对生态环境的影响具有时空复杂性,且各生态因子相互影响;水文情势的变化是所有生态响应的触发条件,泥沙输运是生态响应的关键性因子。为了河道长期连续性的开发与利用,研究泥沙输运及泥沙污染物的释放规律,预测拆坝后河道水质时空变化过程,分析流域尺度上生态系统之间的响应关系等对拆坝的评估决策十分重要。 相似文献
6.
Guillaume Brousse Gilles Arnaud‐Fassetta Frdric Libault Mlanie Bertrand Gabriel Melun Remi Loire Jean‐Ren Malavoi Guillaume Fantino Laurent Borgniet 《河流研究与利用》2020,36(6):880-893
The Saint‐Sauveur dam was built in 1992 in the middle section of the Buëch River. Downstream of the dam, a channel incision by several meters was observed. A gravel replenishment operation was planned in order to restore the active channel. An equivalent of two times the mean annual bedload‐transport capacity (43,500 m3) was replenished downstream of the dam in September 2016. The aim of this paper is to quantify morphological change associated with sediment remobilization in order to evaluate the efficiency of the restoration works. The monitoring was based on a combination of (a) change detection using sequential high‐resolution digital elevation models (from airborne LiDAR data), (b) bedload tracing using active ultrahigh‐frequency radio‐frequency identification technology, and (c) complementary field surveys of channel grain‐size distribution and morphology for bedload‐transport computation. Field monitoring allows us to capture a net aggradation along a 2‐km reach after the first post‐replenishment flood. A sediment balance analysis was performed to back‐calculate bedload supply coming from the sluicing operation during the flood. Although the sediment replenishment operation clearly had a positive impact on the morphological conditions of the starved river reach, the effective bedload supply from artificial berms (22,650 m3) was insufficient to initiate substantial channel shifting along the restored reach and a subsequent amplification of the sediment recharge. The combination of high‐resolution topographic resurveys and sediment tracing was successful to evaluate the downstream propagation of sediment replenishment effects. 相似文献
7.
Sedimentology of New Fluvial Deposits on the Elwha River,Washington, USA,Formed During Large‐Scale Dam Removal 下载免费PDF全文
Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river‐restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi‐stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal‐formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre‐dam‐removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel‐margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre‐dam‐removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer‐term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river‐restoration efforts where large dam removal is planned or proposed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
8.
《Journal of Great Lakes research》2023,49(3):725-736
Adult walleye (Sander vitreus) conduct annual migrations from riverine spawning sites in the Bay of Quinte into the eastern basin of Lake Ontario to forage. Although fidelity to spawning river is quite high for these fish across the Laurentian Great Lakes, very little is known about the repeatability of site selection along the entirety of their annual migration. This study used multiple years of acoustic telemetry (2018–2020) to assess the within-individual repeatability of the timing associated with major migratory events (spawning river entry and departure, main lake entry and departure), as well as the average monthly spatial distribution of individuals throughout the year. Fine-scale sequence analysis was used to combine these two metrics to assess the within and among individual sequence dissimilarity in the population. Within-individual repeatability was high across most timing and spatial measures, and the sequence dissimilarity within individual sequences was significantly less than that among individuals. Sex and size were not significantly related to sequence dissimilarity, while individuals from the Trent River displayed more dissimilarity than those from the Napanee River. The high level of within-individual annual repeatability in migrations was demonstrated not only during spawning activity, but at a daily level throughout the entire year. This research shows that walleye possess the ability to orient themselves and navigate across long distances in a highly repeatable manner at all times of the year. Future work will be required to better understand the underlying mechanisms and drivers behind these abilities. 相似文献
9.
为研究拆坝对河流生态系统造成的影响,从短期和长期两个时间尺度综合分析了河流水文情势、地形地貌、岸边带植物、鱼类和底栖动物等关键生态因子对拆坝的响应,并总结了目前拆坝对生态系统影响的两种主要评估方法。认为根据实际拆坝情况进行评估和基于数值模型进行预测两种评估方法中,实地观测是最直接、最有说服力的研究方法,但受成本和一些不可控因素限制;数值模拟具有速度快、费用低、无比尺影响等优点,可对拆坝影响进行预测,为管理者提供参考,但精度和准确性有待提高。指出后续研究中应综合考虑拆坝过程中各生态因子间的耦合效应,需对不同拆坝时机和分阶段拆坝方式对河流生态系统的影响进行深入研究。 相似文献
10.
Vanessa Rose Gretchen Rollwagen‐Bollens Stephen M. Bollens Julie Zimmerman 《河流研究与利用》2019,35(9):1478-1488
Dams, increasingly common in riverine systems worldwide, are particularly prevalent on the Columbia River (CR) in the United States. Hydroelectric projects, including both storage and run‐of‐river (i.e., minimal storage) structures, on the mainstem CR highly manage water flow, often by releasing water over (rather than through) dams as “spill.” To test the effects of run‐of‐river dam spill on microplankton abundance and composition, we sampled above and below two dams in the lower CR before and during spill conditions in spring 2016 and during and after spill conditions in late summer 2007. We tested the effects of location (i.e., above vs. below dams), spill condition (i.e., before, during, and after spill), and their interaction on microplankton abundance. Generally, diatoms were most abundant during springtime, whereas cyanobacteria were most abundant in late summer. Most taxa were not significantly different in abundance above and below dams, regardless of spill status; although cyanobacteria abundance was marginally higher below dams in summer 2007 (p = .04). Abundances of all taxa were significantly different between pre‐spill and spill periods in spring 2016, whereas only diatom and flagellate abundances were significantly different between spill and post‐spill periods in summer 2007. We conclude that spill conditions may influence microplankton abundance, but are not likely to affect microplankton communities on either side of run‐of‐river dams on the CR. This is important information for dam managers concerned about ecosystem impacts of spill. 相似文献
11.
Two high‐head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine‐derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine‐derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented. Published in 2010 by John Wiley & Sons, Ltd. 相似文献
12.
Rmi Loire Herv Pigay Jean‐Ren Malavoi Leah Beche Quentin Dumoutier Julie Mosseri Caroline Kerjean 《河流研究与利用》2019,35(8):1107-1118
Large‐scale flow release experiments are becoming common for improving aquatic habitat quality downstream of dams. Because of the naturally high fine sediment load in the Durance River, France due to inputs from torrential tributaries draining badlands, unpredictable high flow events with dam overspill are not always sufficient to prevent clogging, which can lead to habitat degradation (especially spawning habitats) in bypassed reaches. Therefore, large‐scale flow experiments were conducted on four reaches to test the efficacy of clear‐water releases to improve aquatic habitat conditions. Continuous measurements of water depth, suspended sediment concentrations, and turbidity were conducted during twelve releases and compared on nine. Before and after each release, superficial clogging was measured. The study shows that there is a link between the volume of suspended sediments carried by water releases and the initial clogging. The volumes carried were low compared with the river's annual transport. The effect on clogging can vary significantly from one release to another. In particular, the hydrological context surrounding the releases has a significant influence on clogging. Comparisons of monitoring showed that releases are more effective on reaches that are more severely regulated (high hydrological control) than on those that are less well‐controlled. The areas with the highest initial clogging tend to unclog more than those with lower initial clogging; however, the latter zones are most impacted by ineffective releases. Performing a release on environments with low initial clogging can therefore be environmentally damaging. To ensure that releases are successful and that intervention is warranted, initial clogging should be measured in the field and releases should only be performed if the clogging is judged to be unfavourable. 相似文献
13.
Ans M. Mouton Herman Van Der Most Ad Jeuken Peter L. M. Goethals Niels De Pauw 《河流研究与利用》2009,25(1):82-97
Water managers and researchers strive towards the same objective: the improvement of the quality status of water bodies. However, there is still a gap between the results of academic studies on water systems and the information currently used in water management. The Water Framework Directive (WFD)‐Explorer, a modular toolbox which supports integrated water management in a river basin, attempts to bridge this gap. The toolbox analyses the impact of different restoration measures on river ecology based on expert rules embedded in this simulation environment. The strengths and weaknesses of the toolbox have been tested on the Zwalm River basin in Flanders, Belgium. The ecological status of streams in the basin spans the whole range of nearly pristine headwaters to severely impacted river stretches further downstream. Considering the key bottlenecks in the Zwalm basin and the user‐driven ecological status objectives, several water quality and physical habitat restoration options have been proposed to meet the European Water Framework Directive goals. The positive impact of restoration measures on the ecological quality ratio (EQR) for macroinvertebrates appeared to be the highest for measures affecting the nutrient inflows and thus chemical water body characteristics. However, the spatial scale on which the WFD‐Explorer modelled the impact of physical habitat restoration may have been too coarse to generate reliable results concerning such restoration measures. Hence, the combination of the WFD‐Explorer results with those of more detailed studies on physical habitat restoration impacts might be a promising approach to reliably support decision‐making implementation of the WFD. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
14.
In order to assess the effects of river and floodplain engineering projects on flooding, a new self‐adaptive hydrodynamic scheme for the simulation of two‐dimensional river flows is proposed. The depth‐averaged motion equations are solved numerically using a fractional step method, in which the convective terms are calculated using the inverse characteristics method and the remaining terms with an explicit method based on a finite difference method. The integration is performed on a dynamically self‐adaptive calculus grid, which allows representation of the movable boundary between wetting and drying regions of the basins to follow the effective development, in time and space, of the expansion phenomenon of flood. The proposed procedure allows the grid's dynamic refinement to avoid coordinate transformation or the use of unstructured grids. The proposed method is simple and allows the thickening of the grid to accommodate the flooding phenomena on the floodplain and to calculate the velocity in the domain regions in which a higher space resolution is required. Therefore, flows running through structures such as weirs, gates, bridges or culverts can be simulated. In the paper two different case studies, approached with the proposed self‐adaptive calculation scheme, are discussed. The studies concern the analysis of the effects of structures, such as roads or embankments, on flooding phenomena in the Tiber and Tanaro basins respectively. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
15.
The Dragonfly Association Index (Insecta: Odonata)—a Tool for the Type‐Specific Assessment of Lowland Rivers 下载免费PDF全文
Species traits of 57 Odonata species occurring in the Austrian bioregion Eastern Ridges and Lowlands (ecoregion Hungarian Lowlands; Illies, 1978 ) were defined by factor loadings of 12 habitat parameters: stream sections crenon, rhithron and potamon; flow velocity; standing water; temporary water; size of water body; open water; open banks; submerged macrophytes; reed; and riparian trees. On the basis of the species‐specific configurations of these habitat parameters, cluster analysis revealed seven dragonfly associations with different habitat needs: association of open waters, association of sparsely vegetated banks, association of reed and riparian trees, association of reed and submerged macrophytes, association of temporary waters, rhithron association and potamon association. Correlations between the associations' habitat requirements and the habitat parameters of the seven (near‐)natural river types, which are present in this bioregion were performed to define river type‐specific association compositions. From these results, a dragonfly association index was created to assess the ecological status of these rivers within the five‐tiered system of the European Union Water Framework Directive, emphasizing hydro‐morphological aspects by comparing the type‐specific reference situation with the actual status quo of dragonfly colonization. The method was applied at different rivers, particularly for the purpose of evaluating restoration measures. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
J. Maithya M. Njiru J. B. Okeyo‐Owuor J. Gichuki 《Lakes & Reservoirs: Research and Management》2012,17(1):65-72
Oreochromis variabilis (Boulenger), a fish species endemic to Lake Victoria, was abundant, forming an important component of the indigenous fisheries stocks before and up to the late‐1950s. Catches declined drastically thereafter, and only sporadic catches are currently found in Lake Victoria. Remnants population of the species, however, are found in several small waterbodies (SWBs) within the lake basin. The life‐history characteristics of O. variabilis in Lake Victoria, including, sex ratio, reproduction and length–weight relationship, were compared to those in selected three SWBs in the lake basin. Fish samples were collected by monofilament gillnets of 30–255 mm between 2001 and 2005. Males predominated over females from all the sampled sites (sex ratio 1.00:0.33). Length at first maturity (Lm50) had mean (±SE) of 18.48 ± 1.50 cm TL for males, and 16.87 ± 0.95 cm TL for females, and did not exhibit any significant differences between habitats. Fecundity ranged between 73 and 14 800 eggs for fish of 13.5–18.6 cm TL, respectively. Absolute fecundity of O. variabilis was proportional to the body weight, but nearly proportional to the cube of the fish length. Egg diameter varied from 0.3 to 5.19 mm, with a mean (±SE) of 3.44 ± 0.08 mm. Growth was allometric in both male and female, being significantly different from the expected value of 3 (P < 0.05). The life‐history strategy of O. variabilis is discussed within the context of changes in the lake and the SWBs. 相似文献
17.
Computational Fluid Dynamics–Habitat Suitability Index (CFD–HSI) Modelling as an Exploratory Tool for Assessing Passability of Riverine Migratory Challenge Zones for Fish 下载免费PDF全文
We developed two‐dimensional computational fluid hydraulics–habitat suitability index (CFD–HSI) models to identify and qualitatively assess potential zones of shallow water depth and high water velocity that may present passage challenges for five major anadromous fish species in a 2.63‐km reach of the main stem Penobscot River, Maine, as a result of a dam removal downstream of the reach. Suitability parameters were based on distribution of fish lengths and body depths and transformed to cruising, maximum sustained and sprint swimming speeds. Zones of potential depth and velocity challenges were calculated based on the hydraulic models; ability of fish to pass a challenge zone was based on the percent of river channel that the contiguous zone spanned and its maximum along‐current length. Three river flows (low: 99.1 m3 sec‐1; normal: 344.9 m3 sec‐1; and high:792.9 m3 sec‐1) were modelled to simulate existing hydraulic conditions and hydraulic conditions simulating removal of a dam at the downstream boundary of the reach. Potential depth challenge zones were nonexistent for all low‐flow simulations of existing conditions for deeper‐bodied fishes. Increasing flows for existing conditions and removal of the dam under all flow conditions increased the number and size of potential velocity challenge zones, with the effects of zones being more pronounced for smaller species. The two‐dimensional CFD–HSI model has utility in demonstrating gross effects of flow and hydraulic alteration, but may not be as precise a predictive tool as a three‐dimensional model. Passability of the potential challenge zones cannot be precisely quantified for two‐dimensional or three‐dimensional models due to untested assumptions and incomplete data on fish swimming performance and behaviours. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
18.
19.
20.
Takele Zeleke Ahmed Moustafa Moussa Mohamed S. El‐Manadely 《Lakes & Reservoirs: Research and Management》2013,18(4):366-371
Angereb Dam, located in Ethiopia, was constructed in early 1994 as a water supply for the town of Gondar up to the year 2020. The reservoir could not achieve this objective, however, because of significant sedimentation problems. Accordingly, one objective of this study was to simulate the historical reservoir sedimentation pattern, as well as predict the near future (until 2015) sedimentation pattern of Angereb Reservoir. The Sedimentation and River Hydraulics one‐dimensional model (SRH‐1D), version 2.6, was used for this purpose. Another objective was to propose possible mitigation measures to reduce the quantity and rate of sedimentation in the reservoir. There was generally good agreement between measurements and model simulations, with the observed trends being well simulated. The exception was that the model tended to overpredict the sediment deposition volumes in the upstream reaches of the reservoir. The two mitigation alternatives for addressing the sedimentation problem, namely managing sediments in the watershed and flushing sediment through the dam bottom outlet, appear to be technically feasibility, with a predicted reduction of the volume of deposited sediment between 63 and 80% be achievable. 相似文献