首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 2 毫秒
1.
Forecasting monthly and quarterly time series using STL decomposition   总被引:1,自引:0,他引:1  
This paper is a re-examination of the benefits and limitations of decomposition and combination techniques in the area of forecasting, and also a contribution to the field, offering a new forecasting method. The new method is based on the disaggregation of time series components through the STL decomposition procedure, the extrapolation of linear combinations of the disaggregated sub-series, and the reaggregation of the extrapolations to obtain estimates for the global series. Applying the forecasting method to data from the NN3 and M1 Competition series, the results suggest that it can perform well relative to four other standard statistical techniques from the literature, namely the ARIMA, Theta, Holt-Winters’ and Holt’s Damped Trend methods. The relative advantages of the new method are then investigated further relative to a simple combination of the four statistical methods and a Classical Decomposition forecasting method. The strength of the method lies in its ability to predict long lead times with relatively high levels of accuracy, and to perform consistently well for a wide range of time series, irrespective of the characteristics, underlying structure and level of noise of the data.  相似文献   

2.
3.
How effective are different approaches for the provision of forecasting support? Forecasts may be either unaided or made with the help of statistical forecasts. In practice, the latter are often crude forecasts that do not take sporadic perturbations into account. Most research considers forecasts based on series that have been cleansed of perturbation effects. This paper considers an experiment in which people made forecasts from time series that were disturbed by promotions. In all conditions, under-forecasting occurred during promotional periods and over-forecasting during normal ones. The relative sizes of these effects depended on the proportions of periods in the data series that contained promotions. The statistical forecasts improved the forecasting accuracy, not because they reduced these biases, but because they decreased the random error (scatter). The performance improvement did not depend on whether the forecasts were based on cleansed series. Thus, the effort invested in producing cleansed time series from which to forecast may not be warranted: companies may benefit from giving their forecasters even crude statistical forecasts. In a second experiment, forecasters received optimal statistical forecasts that took the effects of promotions into account fully. This increased the accuracy because the biases were almost eliminated and the random error was reduced by 20%. Thus, the additional effort required to produce forecasts that take promotional effects into account is worthwhile.  相似文献   

4.
Deep neural networks and gradient boosted tree models have swept across the field of machine learning over the past decade, producing across-the-board advances in performance. The ability of these methods to capture feature interactions and nonlinearities makes them exceptionally powerful and, at the same time, prone to overfitting, leakage, and a lack of generalization in domains with target non-stationarity and collinearity, such as time-series forecasting. We offer guidance to address these difficulties and provide a framework that maximizes the chances of predictions that generalize well and deliver state-of-the-art performance. The techniques we offer for cross-validation, augmentation, and parameter tuning have been used to win several major time-series forecasting competitions—including the M5 Forecasting Uncertainty competition and the Kaggle COVID19 Forecasting series—and, with the proper theoretical grounding, constitute the current best practices in time-series forecasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号