共查询到5条相似文献,搜索用时 0 毫秒
1.
DSGE models are useful tools for evaluating the impact of policy changes, but their use for (short-term) forecasting is still in its infancy. Besides theory-based restrictions, the timeliness of data is an important issue. Since DSGE models are based on quarterly data, they suffer from the publication lag of quarterly national accounts. In this paper we present a framework for the short-term forecasting of GDP based on a medium-scale DSGE model for a small open economy within a currency area. We utilize the information available in monthly indicators based on the approach proposed by Giannone et al. (2009). Using Austrian data, we find that the forecasting performance of the DSGE model can be improved considerably by incorporating monthly indicators, while still maintaining the story-telling capability of the model. 相似文献
2.
A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates 总被引:1,自引:0,他引:1
In this paper, we focus on the different methods which have been proposed in the literature to date for dealing with mixed-frequency and ragged-edge datasets: bridge equations, mixed-data sampling (MIDAS), and mixed-frequency VAR (MF-VAR) models. We discuss their performances for nowcasting the quarterly growth rate of the Euro area GDP and its components, using a very large set of monthly indicators. We investigate the behaviors of single indicator models, forecast combinations and factor models, in a pseudo real-time framework. MIDAS with an AR component performs quite well, and outperforms MF-VAR at most horizons. Bridge equations perform well overall. Forecast pooling is superior to most of the single indicator models overall. Pooling information using factor models gives even better results. The best results are obtained for the components for which more economically related monthly indicators are available. Nowcasts of GDP components can then be combined to obtain nowcasts for the total GDP growth. 相似文献
3.
《International Journal of Forecasting》2023,39(1):266-278
Policymakers, firms, and investors closely monitor traditional survey-based consumer confidence indicators and treat them as an important piece of economic information. To obtain a daily nowcast of monthly consumer confidence, we introduce a latent factor model for the vector of monthly survey-based consumer confidence and daily sentiment embedded in economic media news articles. The proposed mixed-frequency dynamic factor model uses a Toeplitz correlation matrix to account for the serial correlation in the high-frequency sentiment measurement errors. We find significant accuracy gains in nowcasting survey-based Belgian consumer confidence with economic media news sentiment. 相似文献
4.
Duo Qin Marie Anne Cagas Geoffrey Ducanes Nedelyn Magtibay-Ramos Pilipinas Quising 《International Journal of Forecasting》2008,24(3):399-413
This paper compares the forecast performance of automatic leading indicators (ALIs) and macroeconometric structural models (MESMs) commonly used by non-academic macroeconomists. Inflation and GDP growth form the forecast objects for comparison, using data from China, Indonesia and the Philippines. ALIs are found to outperform MESMs for one-period-ahead forecasts, but this superiority disappears as the forecast horizon increases. It is also found that ALIs involve greater uncertainty in choosing indicators, mixing data frequencies and utilizing unrestricted VARs. Two ways of reducing the uncertainty are explored: (i) give theory priority in choosing indicators, and include theory-based disequilibrium shocks in the indicator sets; and (ii) reduce the VARs by means of the general-to-specific modeling procedure. 相似文献
5.
Past research on time-varying sales-response models emphasized the application of different estimation techniques in examining variation in advertising effectiveness over time. This study focuses on comparing sales forecasts using constant and stochastic coefficients sales-response models. Selected constant and stochastic coefficient models are applied to six sets of bimonthly and one set of annual advertising and sales data to assess forecasting accuracy for time horizons of various lengths. Results show improved forecasting accuracy for a first-order autoregressive stochastic coefficient model, particularly in short-run forecasting applications. 相似文献