首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review the results of six forecasting competitions based on the online data science platform Kaggle, which have been largely overlooked by the forecasting community. In contrast to the M competitions, the competitions reviewed in this study feature daily and weekly time series with exogenous variables, business hierarchy information, or both. Furthermore, the Kaggle data sets all exhibit higher entropy than the M3 and M4 competitions, and they are intermittent.In this review, we confirm the conclusion of the M4 competition that ensemble models using cross-learning tend to outperform local time series models and that gradient boosted decision trees and neural networks are strong forecast methods. Moreover, we present insights regarding the use of external information and validation strategies, and discuss the impacts of data characteristics on the choice of statistics or machine learning methods. Based on these insights, we construct nine ex-ante hypotheses for the outcome of the M5 competition to allow empirical validation of our findings.  相似文献   

2.
Standard selection criteria for forecasting models focus on information that is calculated for each series independently, disregarding the general tendencies and performance of the candidate models. In this paper, we propose a new way to perform statistical model selection and model combination that incorporates the base rates of the candidate forecasting models, which are then revised so that the per-series information is taken into account. We examine two schemes that are based on the precision and sensitivity information from the contingency table of the base rates. We apply our approach on pools of either exponential smoothing or ARMA models, considering both simulated and real time series, and show that our schemes work better than standard statistical benchmarks. We test the significance and sensitivity of our results, discuss the connection of our approach to other cross-learning approaches, and offer insights regarding implications for theory and practice.  相似文献   

3.
The scientific method consists of making hypotheses or predictions and then carrying out experiments to test them once the actual results have become available, in order to learn from both successes and mistakes. This approach was followed in the M4 competition with positive results and has been repeated in the M5, with its organizers submitting their ten predictions/hypotheses about its expected results five days before its launch. The present paper presents these predictions/hypotheses and evaluates their realization according to the actual findings of the competition. The results indicate that well-established practices, like combining forecasts, exploiting explanatory variables, and capturing seasonality and special days, remain critical for enhancing forecasting performance, re-confirming also that relatively new approaches, like cross-learning algorithms and machine learning methods, display great potential. Yet, we show that simple, local statistical methods may still be competitive for forecasting high granularity data and estimating the tails of the uncertainty distribution, thus motivating future research in the field of retail sales forecasting.  相似文献   

4.
We participated in the M4 competition for time series forecasting and here describe our methods for forecasting daily time series. We used an ensemble of five statistical forecasting methods and a method that we refer to as the correlator. Our retrospective analysis using the ground truth values published by the M4 organisers after the competition demonstrates that the correlator was responsible for most of our gains over the naïve constant forecasting method. We identify data leakage as one reason for its success, due partly to test data selected from different time intervals, and partly to quality issues with the original time series. We suggest that future forecasting competitions should provide actual dates for the time series so that some of these leakages could be avoided by participants.  相似文献   

5.
In this paper we introduce a class of tentatively plausible, fixed-coefficient models of money demand and evaluate their forecast performance. When these models are reestimated allowing all coefficients to vary over time, the forecasting performance improves dramatically. Aside from offering insights about improved methods of analyzing time series data, the most promising direct use for point estimates derived from time-varying coefficients is as an aid in calibrating proposed models of the kind discussed here.  相似文献   

6.
The ‘M4’ forecasting competition results were featured recently in a special issue of the International Journal of Forecasting and included projections for demographic time series. We sought to investigate whether the best M4 methods could improve the accuracy of small area population forecasts, which generally suffer from much higher forecast errors than regions with larger populations. The aim of this study was to apply the top ten M4 forecasting methods to produce 5- and 10-year forecasts of small area total populations using historical datasets from Australia and New Zealand. Forecasts were compared against the actual population numbers and forecasts from two simple benchmark models. The M4 methods were found to perform relatively well compared to our benchmarks. In the light of these findings, we discuss possible future directions for small area population forecasting research.  相似文献   

7.
We evaluate the performances of various methods for forecasting tourism data. The data used include 366 monthly series, 427 quarterly series and 518 annual series, all supplied to us by either tourism bodies or academics who had used them in previous tourism forecasting studies. The forecasting methods implemented in the competition are univariate and multivariate time series approaches, and econometric models. This forecasting competition differs from previous competitions in several ways: (i) we concentrate on tourism data only; (ii) we include approaches with explanatory variables; (iii) we evaluate the forecast interval coverage as well as the point forecast accuracy; (iv) we observe the effect of temporal aggregation on the forecasting accuracy; and (v) we consider the mean absolute scaled error as an alternative forecasting accuracy measure. We find that pure time series approaches provide more accurate forecasts for tourism data than models with explanatory variables. For seasonal data we implement three fully automated pure time series algorithms that generate accurate point forecasts, and two of these also produce forecast coverage probabilities which are satisfactorily close to the nominal rates. For annual data we find that Naïve forecasts are hard to beat.  相似文献   

8.
We propose an automated method for obtaining weighted forecast combinations using time series features. The proposed approach involves two phases. First, we use a collection of time series to train a meta-model for assigning weights to various possible forecasting methods with the goal of minimizing the average forecasting loss obtained from a weighted forecast combination. The inputs to the meta-model are features that are extracted from each series. Then, in the second phase, we forecast new series using a weighted forecast combination, where the weights are obtained from our previously trained meta-model. Our method outperforms a simple forecast combination, as well as all of the most popular individual methods in the time series forecasting literature. The approach achieved second position in the M4 competition.  相似文献   

9.
Combination methods have performed well in time series forecast competitions. This study proposes a simple but general methodology for combining time series forecast methods. Weights are calculated using a cross-validation scheme that assigns greater weights to methods with more accurate in-sample predictions. The methodology was used to combine forecasts from the Theta, exponential smoothing, and ARIMA models, and placed fifth in the M4 Competition for both point and interval forecasting.  相似文献   

10.
This paper introduces a novel meta-learning algorithm for time series forecast model performance prediction. We model the forecast error as a function of time series features calculated from historical time series with an efficient Bayesian multivariate surface regression approach. The minimum predicted forecast error is then used to identify an individual model or a combination of models to produce the final forecasts. It is well known that the performance of most meta-learning models depends on the representativeness of the reference dataset used for training. In such circumstances, we augment the reference dataset with a feature-based time series simulation approach, namely GRATIS, to generate a rich and representative time series collection. The proposed framework is tested using the M4 competition data and is compared against commonly used forecasting approaches. Our approach provides comparable performance to other model selection and combination approaches but at a lower computational cost and a higher degree of interpretability, which is important for supporting decisions. We also provide useful insights regarding which forecasting models are expected to work better for particular types of time series, the intrinsic mechanisms of the meta-learners, and how the forecasting performance is affected by various factors.  相似文献   

11.
This paper introduces the Random Walk with Drift plus AutoRegressive model (RWDAR) for time-series forecasting. Owing to the presence of a random walk plus drift term, this model shares some similarities with the Theta model of Assimakopoulos and Nikolopoulos (2000). However, the addition of a first-order autoregressive term in the state equation provides additional adaptability and flexibility. Indeed, it is shown that RWDAR tends to outperform the Theta model when forecasting both stationary and nearly non-stationary time series. This paper also proposes a simple estimation method for the RWDAR model based on the solution of the algebraic Riccati equation for the prediction error covariance of the state vector. Simulation results show that this estimator performs as well as the standard Kalman filter approach. Finally, using yearly data from the M3 and M4 competition datasets, it is found that RWDAR outperforms traditional forecasting methods.  相似文献   

12.
The M4 competition included 100,000 time series, with the frequencies ranging from yearly to hourly. The team rankings differ notably across frequencies for both point and probabilistic forecasting. I discuss the performances of these methods, with an emphasis on the hourly series of the M4 competition. I also discuss forecasting with high-frequency data in general.  相似文献   

13.
The well-developed ETS (ExponenTial Smoothing, or Error, Trend, Seasonality) method incorporates a family of exponential smoothing models in state space representation and is widely used for automatic forecasting. The existing ETS method uses information criteria for model selection by choosing an optimal model with the smallest information criterion among all models fitted to a given time series. The ETS method under such a model selection scheme suffers from computational complexity when applied to large-scale time series data. To tackle this issue, we propose an efficient approach to ETS model selection by training classifiers on simulated data to predict appropriate model component forms for a given time series. We provide a simulation study to show the model selection ability of the proposed approach on simulated data. We evaluate our approach on the widely used M4 forecasting competition dataset in terms of both point forecasts and prediction intervals. To demonstrate the practical value of our method, we showcase the performance improvements from our approach on a monthly hospital dataset.  相似文献   

14.
Forecasters typically evaluate the performances of new forecasting methods by exploiting data from past forecasting competitions. Over the years, numerous studies have based their conclusions on such datasets, with mis-performing methods being unlikely to receive any further attention. However, it has been reported that these datasets might not be indicative, as they display many limitations. Since forecasting research is driven somewhat by data from forecasting competitions, it becomes vital to determine whether they are indeed representative of the reality or whether forecasters tend to over-fit their methods on a random sample of series. This paper uses the data from M4 as proportionate to the real world and compares its properties with those of past datasets commonly used in the literature as benchmarks in order to provide evidence on that question. The results show that many popular benchmarks of the past may indeed deviate from reality, and ways forward are discussed in response.  相似文献   

15.
Recurrent Neural Networks (RNNs) have become competitive forecasting methods, as most notably shown in the winning method of the recent M4 competition. However, established statistical models such as exponential smoothing (ETS) and the autoregressive integrated moving average (ARIMA) gain their popularity not only from their high accuracy, but also because they are suitable for non-expert users in that they are robust, efficient, and automatic. In these areas, RNNs have still a long way to go. We present an extensive empirical study and an open-source software framework of existing RNN architectures for forecasting, and we develop guidelines and best practices for their use. For example, we conclude that RNNs are capable of modelling seasonality directly if the series in the dataset possess homogeneous seasonal patterns; otherwise, we recommend a deseasonalisation step. Comparisons against ETS and ARIMA demonstrate that (semi-) automatic RNN models are not silver bullets, but they are nevertheless competitive alternatives in many situations.  相似文献   

16.
This paper examines the out-of-sample forecasting properties of six different economic uncertainty variables for the growth of the real M2 and real M4 Divisia money series for the U.S. using monthly data. The core contention is that information on economic uncertainty improves the forecasting accuracy. We estimate vector autoregressive models using the iterated rolling-window forecasting scheme, in combination with modern regularisation techniques from the field of machine learning. Applying the Hansen-Lunde-Nason model confidence set approach under two different loss functions reveals strong evidence that uncertainty variables that are related to financial markets, the state of the macroeconomy or economic policy provide additional informational content when forecasting monetary dynamics. The use of regularisation techniques improves the forecast accuracy substantially.  相似文献   

17.
This discussion reflects on the results of the M4 forecasting competition, and in particular, the impact of machine learning (ML) methods. Unlike the M3, which included only one ML method (an automatic artificial neural network that performed poorly), M4’s 49 participants included eight that used either pure ML approaches, or ML in conjunction with statistical methods. The six pure (or combination of pure) ML methods again fared poorly, with all of them falling below the Comb benchmark that combined three simple time series methods. However, utilizing ML either in combination with statistical methods (and for selecting weightings) or in a hybrid model with exponential smoothing not only exceeded the benchmark, but performed at the top. While these promising results by no means prove ML to be a panacea, they do challenge the notion that complex methods do not add value to the forecasting process.  相似文献   

18.
19.
The increasing penetration of intermittent renewable energy in power systems brings operational challenges. One way of supporting them is by enhancing the predictability of renewables through accurate forecasting. Convolutional Neural Networks (Convnets) provide a successful technique for processing space-structured multi-dimensional data. In our work, we propose the U-Convolutional model to predict hourly wind speeds for a single location using spatio-temporal data with multiple explanatory variables as an input. The U-Convolutional model is composed of a U-Net part, which synthesizes input information, and a Convnet part, which maps the synthesized data into a single-site wind prediction. We compare our approach with advanced Convnets, a fully connected neural network, and univariate models. We use time series from the Climate Forecast System Reanalysis as datasets and select temperature and u- and v-components of wind as explanatory variables. The proposed models are evaluated at multiple locations (totaling 181 target series) and multiple forecasting horizons. The results indicate that our proposal is promising for spatio-temporal wind speed prediction, with results that show competitive performance on both time horizons for all datasets.  相似文献   

20.
The M4 Competition: 100,000 time series and 61 forecasting methods   总被引:1,自引:0,他引:1  
The M4 Competition follows on from the three previous M competitions, the purpose of which was to learn from empirical evidence both how to improve the forecasting accuracy and how such learning could be used to advance the theory and practice of forecasting. The aim of M4 was to replicate and extend the three previous competitions by: (a) significantly increasing the number of series, (b) expanding the number of forecasting methods, and (c) including prediction intervals in the evaluation process as well as point forecasts. This paper covers all aspects of M4 in detail, including its organization and running, the presentation of its results, the top-performing methods overall and by categories, its major findings and their implications, and the computational requirements of the various methods. Finally, it summarizes its main conclusions and states the expectation that its series will become a testing ground for the evaluation of new methods and the improvement of the practice of forecasting, while also suggesting some ways forward for the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号