首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
    
We present an ensembling approach to medium-term probabilistic load forecasting which ranked second out of 73 competitors in the defined data track of the GEFCom2017 qualifying match. In addition to being accurate, the ensemble method is highly scalable, due to the fact that it had to be applied to nine quantiles in ten zones and for six rounds. Candidate forecasts were generated using random settings for input data, covariates, and learning algorithms. The best candidate forecasts were averaged to create the final forecast, with the number of candidate forecasts being chosen based on their accuracy in similar validation periods.  相似文献   

2.
We propose a new way of selecting among model forms in automated exponential smoothing routines, consequently enhancing their predictive power. The procedure, here addressed as treating, operates by selectively subsetting the ensemble of competing models based on information from their prediction intervals. By the same token, we set forth a pruning strategy to improve the accuracy of both point forecasts and prediction intervals in forecast combination methods. The proposed approaches are respectively applied to automated exponential smoothing routines and Bagging algorithms, to demonstrate their potential. An empirical experiment is conducted on a wide range of series from the M-Competitions. The results attest that the proposed approaches are simple, without requiring much additional computational cost, but capable of substantially improving forecasting accuracy for both point forecasts and prediction intervals, outperforming important benchmarks and recently developed forecast combination methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号