首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this paper we consider estimating an approximate factor model in which candidate predictors are subject to sharp spikes such as outliers or jumps. Given that these sharp spikes are assumed to be rare, we formulate the estimation problem as a penalized least squares problem by imposing a norm penalty function on those sharp spikes. Such a formulation allows us to disentangle the sharp spikes from the common factors and estimate them simultaneously. Numerical values of the estimates can be obtained by solving a principal component analysis (PCA) problem and a one-dimensional shrinkage estimation problem iteratively. In addition, it is easy to incorporate methods for selecting the number of common factors in the iterations. We compare our method with PCA by conducting simulation experiments in order to examine their finite-sample performances. We also apply our method to the prediction of important macroeconomic indicators in the U.S., and find that it can deliver performances that are comparable to those of the PCA method.  相似文献   

2.
    
Gold has multiple attributes and its price is affected by various factors in the market. This paper studies the dynamic relationship between the gold price returns and its affecting factors. Then we use the STL-ETS, neural network and Bayesian structural time series model to predict the gold price returns, and compare their performance with the benchmark models. The results show that the shocks of crude oil returns and VIX have the positive effect on gold price returns, the shocks of the US dollar index have the negative effect on gold price returns. And the fluctuation of gold price returns mainly depends on crude oil price returns shocks. STL-ETS model can accurately fit the fluctuation trend of the gold price returns and improve prediction accuracy.  相似文献   

3.
    
In this paper we review statistical methods which combine hidden Markov models (HMMs) and random effects models in a longitudinal setting, leading to the class of so‐called mixed HMMs. This class of models has several interesting features. It deals with the dependence of a response variable on covariates, serial dependence, and unobserved heterogeneity in an HMM framework. It exploits the properties of HMMs, such as the relatively simple dependence structure and the efficient computational procedure, and allows one to handle a variety of real‐world time‐dependent data. We give details of the Expectation‐Maximization algorithm for computing the maximum likelihood estimates of model parameters and we illustrate the method with two real applications describing the relationship between patent counts and research and development expenditures, and between stock and market returns via the Capital Asset Pricing Model.  相似文献   

4.
对全国发电量时间序列问题的经济计量建模分析   总被引:1,自引:0,他引:1  
经济计量问题从某种意义上来说就是对数据的规律性认识,以及应用这种规律性来指导预测和决策。从数据所属的时空界限来分,我们可以将数据分为截面数据和时间序列或者是二者的合成数据。并且随着时间序列分析方法的完善,尤其在长期决策中时间序列分析也变得越来越常用。本文给出时间序列的B-J方法详细论述,并结合全国发电量时间序列研究其应用价值。  相似文献   

5.
In many applications involving time-varying parameter VARs, it is desirable to restrict the VAR coefficients at each point in time to be non-explosive. This is an example of a problem where inequality restrictions are imposed on states in a state space model. In this paper, we describe how existing MCMC algorithms for imposing such inequality restrictions can work poorly (or not at all) and suggest alternative algorithms which exhibit better performance. Furthermore, we show that previous algorithms involve an approximation relating to a key prior integrating constant. Our algorithms are exact, not involving this approximation. In an application involving a commonly used U.S. data set, we present evidence that the algorithms proposed in this paper work well.  相似文献   

6.
We develop a Bayesian median autoregressive (BayesMAR) model for time series forecasting. The proposed method utilizes time-varying quantile regression at the median, favorably inheriting the robustness of median regression in contrast to the widely used mean-based methods. Motivated by a working Laplace likelihood approach in Bayesian quantile regression, BayesMAR adopts a parametric model bearing the same structure as autoregressive models by altering the Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling strategy for time series forecasting. We estimate model parameters by Markov chain Monte Carlo. Bayesian model averaging is used to account for model uncertainty, including the uncertainty in the autoregressive order, in addition to a Bayesian model selection approach. The proposed methods are illustrated using simulations and real data applications. An application to U.S. macroeconomic data forecasting shows that BayesMAR leads to favorable and often superior predictive performance compared to the selected mean-based alternatives under various loss functions that encompass both point and probabilistic forecasts. The proposed methods are generic and can be used to complement a rich class of methods that build on autoregressive models.  相似文献   

7.
This paper builds an innovative composite world trade-cycle index by means of a dynamic factor model for short-term forecasts of world trade growth of both goods and (usually neglected) services. Trade indicators are selected using a multidimensional approach, including Bayesian model averaging techniques, dynamic correlations, and Granger non-causality tests in a linear vector autoregression framework. To overcome real-time forecasting challenges, the dynamic factor model is extended to account for mixed frequencies, to deal with asynchronous data publication, and to include hard and survey data along with leading indicators. Nonlinearities are addressed with a Markov switching model. Pseudo-real-time empirical simulations suggest that: (i) the global trade index is a useful tool for tracking and forecasting world trade in real time; (ii) the model is able to infer global trade cycles very precisely and better than several competing alternatives; and (iii) global trade finance conditions seem to lead the trade cycle, a conclusion that is in line with the theoretical literature.  相似文献   

8.
周扬 《价值工程》2014,(32):37-39
风电功率的随机波动被认为是对电网带来不利影响的主要因素。研究风电功率的波动特性,对改善风电预测精度与克服风电接入对电网的不利影响都有重要意义。本文通过对30天的风电数据加总,求得15min级的风电功率数据,提出了基于ARIMA模型的风电功率的预测模型。通过对数据进行单步预测取得较好的预测结果,说明ARIMA(1,1,1)模型能够较好的拟合原始数据。给风电功率的预测提供了新的思路。  相似文献   

9.
    
During the last years, graphical models have become a popular tool to represent dependencies among variables in many scientific areas. Typically, the objective is to discover dependence relationships that can be represented through a directed acyclic graph (DAG). The set of all conditional independencies encoded by a DAG determines its Markov property. In general, DAGs encoding the same conditional independencies are not distinguishable from observational data and can be collected into equivalence classes, each one represented by a chain graph called essential graph (EG). However, both the DAG and EG space grow super exponentially in the number of variables, and so, graph structural learning requires the adoption of Markov chain Monte Carlo (MCMC) techniques. In this paper, we review some recent results on Bayesian model selection of Gaussian DAG models under a unified framework. These results are based on closed-form expressions for the marginal likelihood of a DAG and EG structure, which is obtained from a few suitable assumptions on the prior for model parameters. We then introduce a general MCMC scheme that can be adopted both for model selection of DAGs and EGs together with a couple of applications on real data sets.  相似文献   

10.
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous-time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.  相似文献   

11.
Abstract

We attempt to clarify a number of points regarding use of spatial regression models for regional growth analysis. We show that as in the case of non-spatial growth regressions, the effect of initial regional income levels wears off over time. Unlike the non-spatial case, long-run regional income levels depend on: own region as well as neighbouring region characteristics, the spatial connectivity structure of the regions, and the strength of spatial dependence. Given this, the search for regional characteristics that exert important influences on income levels or growth rates should take place using spatial econometric methods that account for spatial dependence as well as own and neighbouring region characteristics, the type of spatial regression model specification, and weight matrix. The framework adopted here illustrates a unified approach for dealing with these issues.  相似文献   

12.
山东省人均GDP时间序列模型的建立   总被引:2,自引:0,他引:2  
人均GDP的增长具有其内在的规律性。从山东省的实际情况出发,以1978--2002年山东省逐年人均GDP的统计数据为依据,将这些数据进行平稳化、零均值化处理,并利用序列的自相关函数、偏自相关函数的性质,确认序列应当适合的模型,从而建立其时间序列模型。  相似文献   

13.
对经济增长的时间序列分析   总被引:1,自引:0,他引:1  
时间序列分析在经济运用中作用十分明显。利用1980~2003年国内生产总值的相关资料,运用时间序列分析,应用SAS软件对经济增长时间序列进行模型识别、拟合、估计和预测,预测结果较为满意。而改革开放以来,投资在经济增长中的作用越来越明显,在对经济增长序列进行时间序列分析的同时,也结合回归分析建立经济增长和投资的回归-时间序列组合模型来进行分析。  相似文献   

14.
    
In statistical diagnostics and sensitivity analysis, the local influence method plays an important role and has certain advantages over other methods in several situations. In this paper, we use this method to study time series of count data when employing a Poisson autoregressive model. We consider case‐weights, scale, data, and additive perturbation schemes to obtain their corresponding vectors and matrices of derivatives for the measures of slope and normal curvatures. Based on the curvature diagnostics, we take a stepwise local influence approach to deal with data with possible masking effects. Finally, our established results are illustrated to be effective by analyzing a stock transactions data set.  相似文献   

15.
    
The purpose of this paper is to provide a critical discussion on real-time estimation of dynamic generalized linear models. We describe and contrast three estimation schemes, the first of which is based on conjugate analysis and linear Bayes methods, the second based on posterior mode estimation, and the third based on sequential Monte Carlo sampling methods, also known as particle filters. For the first scheme, we give a summary of inference components, such as prior/posterior and forecast densities, for the most common response distributions. Considering data of arrivals of tourists in Cyprus, we illustrate the Poisson model, providing a comparative analysis of the above three schemes.  相似文献   

16.
    
Carmona considered an increasing sequence of finite games in each of which players are characterized by payoff functions that are restricted to vary within a uniformly equicontinuous set and choose their strategies from a common compact metric strategy set. Then Carmona proved that each finite game in an upper tail of such a sequence admits an approximate Nash equilibrium in pure strategies.  相似文献   

17.
    
We propose the construction of copulas through the inversion of nonlinear state space models. These copulas allow for new time series models that have the same serial dependence structure as a state space model, but with an arbitrary marginal distribution, and flexible density forecasts. We examine the time series properties of the copulas, outline serial dependence measures, and estimate the models using likelihood-based methods. Copulas constructed from three example state space models are considered: a stochastic volatility model with an unobserved component, a Markov switching autoregression, and a Gaussian linear unobserved component model. We show that all three inversion copulas with flexible margins improve the fit and density forecasts of quarterly U.S. broad inflation and electricity inflation.  相似文献   

18.
罗娟  唐利民 《价值工程》2010,29(2):86-87
通过添加一个正则化因子α,使时间序列AR(n)模型的最小二乘估计(X′X)-1X′Y变为(X′X+αI)-1X′Y,改善了时间序列分析模型中信息矩阵的病态程度,避免了时间序列分析模型产生不适定;经济统计数据分析表明,新的正则化时间序列分析模型在一定程度上起到了稳定所求参数的作用。  相似文献   

19.
李小姣 《物流科技》2010,33(4):56-58
货运量是运输系统中一个重要指标。研究货运量的变化规律,对货运量进行科学合理预测,对交通规划和经济发展具有重要意义。对货运量进行时间序列分析,建立了货运量的传统时间序列模型,观察到残差存在自相关,提出修正残差的ARMA模型.消除自相关。最后根据模型对货运量进行预测,并提出政策建议。  相似文献   

20.
Time series data of interest to social scientists often have the property of random walks in which the statistical properties of the series including means and variances vary over time. Such non-stationary series are by definition unpredictable. Failure to meet the assumption of stationarity in the process of analyzing time series variables may result in spurious and unreliable statistical inferences. This paper outlines the problems of using non-stationary data in regression analysis and identifies innovative solutions developed recently in econometrics. Cointegration and error-correction models have recently received positive attention as remedies to the problems of ``spurious regression' arising from non-stationary series. In this paper, we illustrate the relevant statistical concepts concerning these methods by referring to similar concepts used in cross-sectional analysis. An historical example is used to demonstrate how such techniques are applied. It illustrates that ``foreign' immigrants to Canada (1896–1940) experienced elevated levels of social control in areas of high police discretion. ``Foreign' immigration was unrelated to trends in serious crimes but closely related to vagrancy and drunkenness. The merits of cointegration are compared to traditional approaches to the regression analysis of time series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号