首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In this paper, we argue that, once the costs of maintaining the hedging portfolio are properly taken into account, semistatic portfolios should more properly be thought of as separate classes of derivatives, with nontrivial, model‐dependent payoff structures. We derive new integral representations for payoffs of exotic European options in terms of payoffs of vanillas, different from the Carr–Madan representation, and suggest approximations of the idealized static hedging/replicating portfolio using vanillas available in the market. We study the dependence of the hedging error on a model used for pricing and show that the variance of the hedging errors of static hedging portfolios can be sizably larger than the errors of variance‐minimizing portfolios. We explain why the exact semistatic hedging of barrier options is impossible for processes with jumps, and derive general formulas for variance‐minimizing semistatic portfolios. We show that hedging using vanillas only leads to larger errors than hedging using vanillas and first touch digitals. In all cases, efficient calculations of the weights of the hedging portfolios are in the dual space using new efficient numerical methods for calculation of the Wiener–Hopf factors and Laplace–Fourier inversion.  相似文献   

2.
We develop a general framework for statically hedging and pricing European‐style options with nonstandard terminal payoffs, which can be applied to mixed static–dynamic and semistatic hedges for many path‐dependent exotic options including variance swaps and barrier options. The goal is achieved by separating the hedging and pricing problems to obtain replicating strategies. Once prices have been obtained for a set of basis payoffs, the pricing and hedging of financial securities with arbitrary payoff functions is accomplished by computing a set of “hedge coefficients” for that security. This method is particularly well suited for pricing baskets of options simultaneously, and is robust to discontinuities of payoffs. In addition, the method enables a systematic comparison of the value of a payoff (or portfolio) across a set of competing model specifications with implications for security design.  相似文献   

3.
This study investigates the hedging effectiveness of a dynamic moving‐window OLS hedging model, formed using wavelet decomposed time‐series. The wavelet transform is applied to calculate the appropriate dynamic minimum‐variance hedge ratio for various hedging horizons for a number of assets. The effectiveness of the dynamic multiscale hedging strategy is then tested, both in‐ and out‐of‐sample, using standard variance reduction and expanded to include a downside risk metric, the scale‐dependent Value‐at‐Risk. Measured using variance reduction, the effectiveness converges to one at longer scales, while a measure of VaR reduction indicates a portion of residual risk remains at all scales. Analysis of the hedge portfolio distributions indicate that this unhedged tail risk is related to excess portfolio kurtosis found at all scales.  相似文献   

4.
5.
This paper presents hedging strategies for European and exotic options in a Lévy market. By applying Taylor’s theorem, dynamic hedging portfolios are constructed under different market assumptions, such as the existence of power jump assets or moment swaps. In the case of European options or baskets of European options, static hedging is implemented. It is shown that perfect hedging can be achieved. Delta and gamma hedging strategies are extended to higher moment hedging by investing in other traded derivatives depending on the same underlying asset. This development is of practical importance as such other derivatives might be readily available. Moment swaps or power jump assets are not typically liquidly traded. It is shown how minimal variance portfolios can be used to hedge the higher order terms in a Taylor expansion of the pricing function, investing only in a risk‐free bank account, the underlying asset, and potentially variance swaps. The numerical algorithms and performance of the hedging strategies are presented, showing the practical utility of the derived results.  相似文献   

6.
This study focuses on the problem of hedging longer‐term commodity positions, which often arises when the maturity of actively traded futures contracts on this commodity is limited to a few months. In this case, using a rollover strategy results in a high residual risk, which is related to the uncertain futures basis. We use a one‐factor term structure model of futures convenience yields in order to construct a hedging strategy that minimizes both spot‐price risk and rollover risk by using futures of two different maturities. The model is tested using three commodity futures: crude oil, orange juice, and lumber. In the out‐of‐sample test, the residual variance of the 24‐month combined spot‐futures positions is reduced by, respectively, 77%, 47%, and 84% compared to the variance of a naïve hedging portfolio. Even after accounting for the higher trading volume necessary to maintain a two‐contract hedge portfolio, this risk reduction outweighs the extra trading costs for the investor with an average risk aversion. © 2003 Wiley Periodicals, Inc. Jrl Fut Mark 23:109–133, 2003  相似文献   

7.
We price an American floating strike lookback option under the Black–Scholes model with a hypothetic static hedging portfolio (HSHP) composed of nontradable European options. Our approach is more efficient than the tree methods because recalculating the option prices is much quicker. Applying put–call duality to an HSHP yields a tradable semistatic hedging portfolio (SSHP). Numerical results indicate that an SSHP has better hedging performance than a delta-hedged portfolio. Finally, we investigate the model risk for SSHP under a stochastic volatility assumption and find that the model risk is related to the correlation between asset price and volatility.  相似文献   

8.
In this paper, we investigate a method based on risk minimization to hedge observable but nontradable source of risk on financial or energy markets. The optimal portfolio strategy is obtained by minimizing dynamically the conditional value‐at‐risk (CVaR) using three main tools: a stochastic approximation algorithm, optimal quantization, and variance reduction techniques (importance sampling and linear control variable), as the quantities of interest are naturally related to rare events. As a first step, we investigate the problem of CVaR regression, which corresponds to a static portfolio strategy where the number of units of each tradable assets is fixed at time 0 and remains unchanged till maturity. We devise a stochastic approximation algorithm and study its a.s. convergence and weak convergence rate. Then, we extend our approach to the dynamic case under the assumption that the process modeling the nontradable source of risk and financial assets prices is Markovian. Finally, we illustrate our approach by considering several portfolios in connection with energy markets.  相似文献   

9.
This paper solves the mean–variance hedging problem in Heston's model with a stochastic opportunity set moving systematically with the volatility of stock returns. We allow for correlation between stock returns and their volatility (so-called leverage effect). Our contribution is threefold: using a new concept of opportunity-neutral measure we present a simplified strategy for computing a candidate solution in the correlated case. We then go on to show that this candidate generates the true variance-optimal martingale measure; this step seems to be partially missing in the literature. Finally, we derive formulas for the hedging strategy and the hedging error.  相似文献   

10.
We investigate the pricing–hedging duality for American options in discrete time financial models where some assets are traded dynamically and others, for example, a family of European options, only statically. In the first part of the paper, we consider an abstract setting, which includes the classical case with a fixed reference probability measure as well as the robust framework with a nondominated family of probability measures. Our first insight is that, by considering an enlargement of the space, we can see American options as European options and recover the pricing–hedging duality, which may fail in the original formulation. This can be seen as a weak formulation of the original problem. Our second insight is that a duality gap arises from the lack of dynamic consistency, and hence that a different enlargement, which reintroduces dynamic consistency is sufficient to recover the pricing–hedging duality: It is enough to consider fictitious extensions of the market in which all the assets are traded dynamically. In the second part of the paper, we study two important examples of the robust framework: the setup of Bouchard and Nutz and the martingale optimal transport setup of Beiglböck, Henry‐Labordère, and Penkner, and show that our general results apply in both cases and enable us to obtain the pricing–hedging duality for American options.  相似文献   

11.
When using derivative instruments such as futures to hedge a portfolio of risky assets, the primary objective is to estimate the optimal hedge ratio (OHR). When agents have mean‐variance utility and the futures price follows a martingale, the OHR is equivalent to the minimum variance hedge ratio,which can be estimated by regressing the spot market return on the futures market return using ordinary least squares. To accommodate time‐varying volatility in asset returns, estimators based on rolling windows, GARCH, or EWMA models are commonly employed. However, all of these approaches are based on the sample variance and covariance estimators of returns, which, while consistent irrespective of the underlying distribution of the data, are not in general efficient. In particular, when the distribution of the data is leptokurtic, as is commonly found for short horizon asset returns, these estimators will attach too much weight to extreme observations. This article proposes an alternative to the standard approach to the estimation of the OHR that is robust to the leptokurtosis of returns. We use the robust OHR to construct a dynamic hedging strategy for daily returns on the FTSE100 index using index futures. We estimate the robust OHR using both the rolling window approach and the EWMA approach, and compare our results to those based on the standard rolling window and EWMA estimators. It is shown that the robust OHR yields a hedged portfolio variance that is marginally lower than that based on the standard estimator. Moreover, the variance of the robust OHR is as much as 70% lower than the variance of the standard OHR, substantially reducing the transaction costs that are associated with dynamic hedging strategies. © 2003 Wiley Periodicals, Inc. Jrl Fut Mark 23:799–816, 2003  相似文献   

12.
This study uses asymptotic analysis to derive optimal hedging strategies for option portfolios hedged using an imperfectly correlated hedging asset with small fixed and/or proportional transaction costs, obtaining explicit formulae in special cases. This is of use when it is impractical to hedge using the underlying asset itself. The hedging strategy holds a position in the hedging asset whose value lies between two bounds, which are independent of the hedging asset's current value. For low absolute correlation between hedging and hedged assets, highly risk‐averse investors and large portfolios, hedging strategies and option values differ significantly from their perfect market equivalents. © 2011 Wiley Periodicals, Inc. Jrl Fut Mark 31:855–897, 2011  相似文献   

13.
PORTFOLIO OPTIMIZATION WITH DOWNSIDE CONSTRAINTS   总被引:1,自引:0,他引:1  
We consider the portfolio optimization problem for an investor whose consumption rate process and terminal wealth are subject to downside constraints. In the standard financial market model that consists of d risky assets and one riskless asset, we assume that the riskless asset earns a constant instantaneous rate of interest,   r > 0  , and that the risky assets are geometric Brownian motions. The optimal portfolio policy for a wide scale of utility functions is derived explicitly. The gradient operator and the Clark–Ocone formula in Malliavin calculus are used in the derivation of this policy. We show how Malliavin calculus approach can help us get around certain difficulties that arise in using the classical "delta hedging" approach.  相似文献   

14.
We consider hedging strategies against contingent claims depending on a large number of assets (typically options on an index). We introduce strategies involving a limited number of assets and give explicit formulae to characterize optimal strategies. Numerical methods to compute these formulae are also discussed.  相似文献   

15.
This study analyzes the problem of multi‐commodity hedging from the downside risk perspective. The lower partial moments (LPM2)‐minimizing hedge ratios for the stylized hedging problem of a typical Texas panhandle feedlot operator are calculated and compared with hedge ratios implied by the conventional minimum‐variance (MV) criterion. A kernel copula is used to model the joint distributions of cash and futures prices for commodities included in the model. The results are consistent with the findings in the single‐commodity case in that the MV approach leads to over‐hedging relative to the LPM2‐based hedge. An interesting and somewhat unexpected result is that minimization of a downside risk criterion in a multi‐commodity setting may lead to a “Texas hedge” (i.e. speculation) being an optimal strategy for at least one commodity. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:290–304, 2010  相似文献   

16.
In a number of earlier studies it has been demonstrated that the traditional regression‐based static approach is inappropriate for hedging with futures, with the result that a variety of alternative dynamic hedging strategies have emerged. In this study the authors propose a class of new copula‐based GARCH models for the estimation of the optimal hedge ratio and compare their effectiveness with that of other hedging models, including the conventional static, the constant conditional correlation (CCC) GARCH, and the dynamic conditional correlation (DCC) GARCH models. With regard to the reduction of variance in the returns of hedged portfolios, the empirical results show that in both the in‐sample and out‐of‐sample tests, with full flexibility in the distribution specifications, the copula‐based GARCH models perform more effectively than other dynamic hedging models. © 2008 Wiley Periodicals, Inc. Jrl Fut Mark 28:1095–1116, 2008  相似文献   

17.
PARTIAL HEDGING IN A STOCHASTIC VOLATILITY ENVIRONMENT   总被引:1,自引:0,他引:1  
We consider the problem of partial hedging of derivative risk in a stochastic volatility environment. It is related to state-dependent utility maximization problems in classical economics. We derive the dual problem from the Legendre transform of the associated Bellman equation and interpret the optimal strategy as the perfect hedging strategy for a modified claim. Under the assumption that volatility is fast mean-reverting and using a singular perturbation analysis, we derive approximate value functions and strategies that are easy to implement and study. The analysis identifies the usual mean historical volatility and the harmonically averaged long-run volatility as important statistics for such optimization problems without further specification of a stochastic volatility model. The approximation can be improved by specifying a model and can be calibrated for the leverage effect from the implied volatility skew. We study the effectiveness of these strategies using simulated stock paths.  相似文献   

18.
We develop a theory of robust pricing and hedging of a weighted variance swap given market prices for a finite number of co‐maturing put options. We assume the put option prices do not admit arbitrage and deduce no‐arbitrage bounds on the weighted variance swap along with super‐ and sub‐replicating strategies that enforce them. We find that market quotes for variance swaps are surprisingly close to the model‐free lower bounds we determine. We solve the problem by transforming it into an analogous question for a European option with a convex payoff. The lower bound becomes a problem in semi‐infinite linear programming which we solve in detail. The upper bound is explicit. We work in a model‐independent and probability‐free setup. In particular, we use and extend Föllmer's pathwise stochastic calculus. Appropriate notions of arbitrage and admissibility are introduced. This allows us to establish the usual hedging relation between the variance swap and the “log contract” and similar connections for weighted variance swaps. Our results take the form of a FTAP: we show that the absence of (weak) arbitrage is equivalent to the existence of a classical model which reproduces the observed prices via risk‐neutral expectations of discounted payoffs.  相似文献   

19.
Classical put–call symmetry relates the price of puts and calls under a suitable dual market transform. One well‐known application is the semistatic hedging of path‐dependent barrier options with European options. This, however, in its classical form requires the price process to observe rather stringent and unrealistic symmetry properties. In this paper, we develop a general self‐duality theorem to develop valuation schemes for barrier options in stochastic volatility models with correlation.  相似文献   

20.
Dynamic futures‐hedging ratios are estimated across seven markets using generalized models of the variance/covariance structure. The hedging performances of the resultant dynamic strategies are then compared with static and naïve strategies, both in‐ and out‐of‐sample. Bayesian‐adjusted hedge ratios also are employed as error purgers. The empirical results indicate that the generalized dynamic models are well specified and that their use in determining optimal hedge ratios can lead to improvements in hedging performance as measured by the volatilities of the returns on the optimally hedged position. © 2003 Wiley Periodicals, Inc. Jrl Fut Mark 23:241–260, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号