首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been recently shown that rough volatility models, where the volatility is driven by a fractional Brownian motion with small Hurst parameter, provide very relevant dynamics in order to reproduce the behavior of both historical and implied volatilities. However, due to the non‐Markovian nature of the fractional Brownian motion, they raise new issues when it comes to derivatives pricing. Using an original link between nearly unstable Hawkes processes and fractional volatility models, we compute the characteristic function of the log‐price in rough Heston models. In the classical Heston model, the characteristic function is expressed in terms of the solution of a Riccati equation. Here, we show that rough Heston models exhibit quite a similar structure, the Riccati equation being replaced by a fractional Riccati equation.  相似文献   

2.
The classic approach to modeling financial markets consists of four steps. First, one fixes a currency unit. Second, one describes in that unit the evolution of financial assets by a stochastic process. Third, one chooses in that unit a numéraire, usually the price process of a positive asset. Fourth, one divides the original price process by the numéraire and considers the class of admissible strategies for trading. This approach has one fundamental drawback: Almost all concepts, definitions, and results, including no‐arbitrage conditions like NA, NFLVR, and NUPBR depend by their very definition, at least formally, on initial choices of a currency unit and a numéraire. In this paper, we develop a new framework for modeling financial markets, which is not based on ex‐ante choices of a currency unit and a numéraire. In particular, we introduce a “numéraire‐independent” notion of no‐arbitrage and derive its dual characterization. This yields a numéraire‐independent version of the fundamental theorem of asset pricing (FTAP). We also explain how the classic approach and other recent approaches to modeling financial markets and studying no‐arbitrage can be embedded in our framework.  相似文献   

3.
In this work, we introduce the notion of fully incomplete markets. We prove that for these markets, the super‐replication price coincides with the model‐free super‐replication price. Namely, the knowledge of the model does not reduce the super‐replication price. We provide two families of fully incomplete models: stochastic volatility models and rough volatility models. Moreover, we give several computational examples. Our approach is purely probabilistic.  相似文献   

4.
Recent empirical studies suggest that the volatility of an underlying price process may have correlations that decay slowly under certain market conditions. In this paper, the volatility is modeled as a stationary process with long‐range correlation properties in order to capture such a situation, and we consider European option pricing. This means that the volatility process is neither a Markov process nor a martingale. However, by exploiting the fact that the price process is still a semimartingale and accordingly using the martingale method, we can obtain an analytical expression for the option price in the regime where the volatility process is fast mean reverting. The volatility process is modeled as a smooth and bounded function of a fractional Ornstein–Uhlenbeck process. We give the expression for the implied volatility, which has a fractional term structure.  相似文献   

5.
This article shows that the volatility smile is not necessarily inconsistent with the Black–Scholes analysis. Specifically, when transaction costs are present, the absence of arbitrage opportunities does not dictate that there exists a unique price for an option. Rather, there exists a range of prices within which the option's price may fall and still be consistent with the Black–Scholes arbitrage pricing argument. This article uses a linear program (LP) cast in a binomial framework to determine the smallest possible range of prices for Standard & Poor's 500 Index options that are consistent with no arbitrage in the presence of transaction costs. The LP method employs dynamic trading in the underlying and risk‐free assets as well as fixed positions in other options that trade on the same underlying security. One‐way transaction‐cost levels on the index, inclusive of the bid–ask spread, would have to be below six basis points for deviations from Black–Scholes pricing to present an arbitrage opportunity. Monte Carlo simulations are employed to assess the hedging error induced with a 12‐period binomial model to approximate a continuous‐time geometric Brownian motion. Once the risk caused by the hedging error is accounted for, transaction costs have to be well below three basis points for the arbitrage opportunity to be profitable two times out of five. This analysis indicates that market prices that deviate from those given by a constant‐volatility option model, such as the Black–Scholes model, can be consistent with the absence of arbitrage in the presence of transaction costs. © 2001 John Wiley & Sons, Inc. Jrl Fut Mark 21:1151–1179, 2001  相似文献   

6.
In this paper, we present a highly efficient approach to price variance swaps with discrete sampling times. We have found a closed‐form exact solution for the partial differential equation (PDE) system based on the Heston's two‐factor stochastic volatility model embedded in the framework proposed by Little and Pant. In comparison with the previous approximation models based on the assumption of continuous sampling time, the current research of working out a closed‐form exact solution for variance swaps with discrete sampling times at least serves for two major purposes: (i) to verify the degree of validity of using a continuous‐sampling‐time approximation for variance swaps of relatively short sampling period; (ii) to demonstrate that significant errors can result from still adopting such an assumption for a variance swap with small sampling frequencies or long tenor. Other key features of our new solution approach include the following: (1) with the newly found analytic solution, all the hedging ratios of a variance swap can also be analytically derived; (2) numerical values can be very efficiently computed from the newly found analytic formula.  相似文献   

7.
This paper develops a novel class of hybrid credit‐equity models with state‐dependent jumps, local‐stochastic volatility, and default intensity based on time changes of Markov processes with killing. We model the defaultable stock price process as a time‐changed Markov diffusion process with state‐dependent local volatility and killing rate (default intensity). When the time change is a Lévy subordinator, the stock price process exhibits jumps with state‐dependent Lévy measure. When the time change is a time integral of an activity rate process, the stock price process has local‐stochastic volatility and default intensity. When the time change process is a Lévy subordinator in turn time changed with a time integral of an activity rate process, the stock price process has state‐dependent jumps, local‐stochastic volatility, and default intensity. We develop two analytical approaches to the pricing of credit and equity derivatives in this class of models. The two approaches are based on the Laplace transform inversion and the spectral expansion approach, respectively. If the resolvent (the Laplace transform of the transition semigroup) of the Markov process and the Laplace transform of the time change are both available in closed form, the expectation operator of the time‐changed process is expressed in closed form as a single integral in the complex plane. If the payoff is square integrable, the complex integral is further reduced to a spectral expansion. To illustrate our general framework, we time change the jump‐to‐default extended constant elasticity of variance model of Carr and Linetsky (2006) and obtain a rich class of analytically tractable models with jumps, local‐stochastic volatility, and default intensity. These models can be used to jointly price equity and credit derivatives.  相似文献   

8.
We consider the non‐Gaussian stochastic volatility model of Barndorff‐Nielsen and Shephard for the exponential mean‐reversion model of Schwartz proposed for commodity spot prices. We analyze the properties of the stochastic dynamics, and show in particular that the log‐spot prices possess a stationary distribution defined as a normal variance‐mixture model. Furthermore, the stochastic volatility model allows for explicit forward prices, which may produce a hump structure inherited from the mean‐reversion of the stochastic volatility. Although the spot price dynamics has continuous paths, the forward prices will have a jump dynamics, where jumps occur according to changes in the volatility process. We compare with the popular Heston stochastic volatility dynamics, and show that the Barndorff‐Nielsen and Shephard model provides a more flexible framework in describing commodity spot prices. An empirical example on UK spot data is included.  相似文献   

9.
To assure price admissibility—that all bond prices, yields, and forward rates remain positive—we show how to control the state variables within the class of arbitrage‐free linear price function models for the evolution of interest rate yield curves over time. Price admissibility is necessary to preclude cash‐and‐carry arbitrage, a market imperfection that can happen even with a risk‐neutral diffusion process and positive bond prices. We assure price admissibility by (i) defining the state variables to be scaled partial sums of weighted coefficients of the exponential terms in the bond pricing function, (ii) identifying a simplex within which these state variables remain price admissible, and (iii) choosing a general functional form for the diffusion that selectively diminishes near the simplex boundary. By assuring that prices, yields, and forward rates remain positive with tractable diffusions for the physical and risk‐neutral measures, an obstacle is removed from the wider acceptance of interest rate methods that are linear in prices.  相似文献   

10.
In this paper we ask whether, given a stock market and an illiquid derivative, there exists arbitrage‐free prices at which a utility‐maximizing agent would always want to buy the derivative, irrespectively of his own initial endowment of derivatives and cash. We prove that this is false for any given investor if one considers all initial endowments with finite utility, and that it can instead be true if one restricts to the endowments in the interior. We show, however, how the endowments on the boundary can give rise to very odd phenomena; for example, an investor with such an endowment would choose not to trade in the derivative even at prices arbitrarily close to some arbitrage price.  相似文献   

11.
We propose an approach to the valuation of payoffs in general semimartingale models of financial markets where prices are nonnegative. Each asset price can hit 0; we only exclude that this ever happens simultaneously for all assets. We start from two simple, economically motivated axioms, namely, absence of arbitrage (in the sense of NUPBR) and absence of relative arbitrage among all buy‐and‐hold strategies (called static efficiency). A valuation process for a payoff is then called semi‐efficient consistent if the financial market enlarged by that process still satisfies this combination of properties. It turns out that this approach lies in the middle between the extremes of valuing by risk‐neutral expectation and valuing by absence of arbitrage alone. We show that this always yields put‐call parity, although put and call values themselves can be nonunique, even for complete markets. We provide general formulas for put and call values in complete markets and show that these are symmetric and that both contain three terms in general. We also show that our approach recovers all the put‐call parity respecting valuation formulas in the classic theory as special cases, and we explain when and how the different terms in the put and call valuation formulas disappear or simplify. Along the way, we also define and characterize completeness for general semimartingale financial markets and connect this to the classic theory.  相似文献   

12.
The no‐arbitrage relation between futures and spot prices implies an analogous relation between futures and spot daily ranges. The long‐memory features of the range‐based volatility estimators are analyzed, and fractional cointegration is tested in a semi‐parametric framework. In particular, the no‐arbitrage condition is used to derive a long‐run relationship between volatility measures and to justify the use of a fractional vector error correction model (FVECM) to study their dynamic relationship. The out‐of‐sample forecasting superiority of FVECM, with respect to alternative models, is documented. The results highlight the importance of incorporating the long‐run equilibrium in volatilities to obtain better forecasts, given the information content in the volatility of futures prices. © 2011 Wiley Periodicals, Inc. Jrl Fut Mark 33:77–102, 2013  相似文献   

13.
We consider an asset whose risk‐neutral dynamics are described by a general class of local‐stochastic volatility models and derive a family of asymptotic expansions for European‐style option prices and implied volatilities. We also establish rigorous error estimates for these quantities. Our implied volatility expansions are explicit; they do not require any special functions nor do they require numerical integration. To illustrate the accuracy and versatility of our method, we implement it under four different model dynamics: constant elasticity of variance local volatility, Heston stochastic volatility, three‐halves stochastic volatility, and SABR local‐stochastic volatility.  相似文献   

14.
European options are priced in a framework à la Black‐Scholes‐Merton, which is extended to incorporate stochastic dividend yield under a stochastic mean–reverting market price of risk. Explicit formulas are obtained for call and put prices and their Greek parameters. Some well‐known properties of the Black‐Scholes‐Merton formula fail to hold in this setting. For example, the delta of the call can be negative and even greater than one in absolute terms. Moreover, call prices can be a decreasing function of the underlying volatility although the latter is constant. Finally, and most importantly, option prices highly depend on the features of the market price of risk, which does not need to be specified at all in the standard Black‐Scholes‐Merton setting. The results are simulated in order to assess the economic impact of assuming that the dividend yield is deterministic when it is actually stochastic, as well as to assess the economic importance of the features of the market price of risk. © 2006 Wiley Periodicals, Inc. Jrl Fut Mark 26:703–732, 2006  相似文献   

15.
We characterize the behavior of the Rough Heston model introduced by Jaisson and Rosenbaum (2016, Ann. Appl. Probab., 26, 2860–2882) in the small‐time, large‐time, and (i.e., ) limits. We show that the short‐maturity smile scales in qualitatively the same way as a general rough stochastic volatility model , and the rate function is equal to the Fenchel–Legendre transform of a simple transformation of the solution to the same Volterra integral equation (VIE) that appears in El Euch and Rosenbaum (2019, Math. Financ., 29, 3–38), but with the drift and mean reversion terms removed. The solution to this VIE satisfies a space–time scaling property which means we only need to solve this equation for the moment values of and so the rate function can be efficiently computed using an Adams scheme or a power series, and we compute a power series in the log‐moneyness variable for the asymptotic implied volatility which yields tractable expressions for the implied vol skew and convexity which is useful for calibration purposes. We later derive a formal saddle point approximation for call options in the Forde and Zhang (2017) large deviations regime which goes to higher order than previous works for rough models. Our higher‐order expansion captures the effect of both drift terms, and at leading order is of qualitatively the same form as the higher‐order expansion for a general model which appears in Friz et al. (2018, Math. Financ., 28, 962–988). The limiting asymptotic smile in the large‐maturity regime is obtained via a stability analysis of the fixed points of the VIE, and is the same as for the standard Heston model in Forde and Jacquier (2011, Finance Stoch., 15, 755–780). Finally, using Lévy's convergence theorem, we show that the log stock price tends weakly to a nonsymmetric random variable as (i.e., ) whose moment generating function (MGF) is also the solution to the Rough Heston VIE with , and we show that tends weakly to a nonsymmetric random variable as , which leads to a nonflat nonsymmetric asymptotic smile in the Edgeworth regime, where the log‐moneyness as , and we compute this asymptotic smile numerically. We also show that the third moment of the log stock price tends to a finite constant as (in contrast to the Rough Bergomi model discussed in Forde et al. (2020, Preprint) where the skew flattens or blows up) and the process converges on pathspace to a random tempered distribution which has the same law as the hyper‐rough Heston model, discussed in Jusselin and Rosenbaum (2020, Math. Finance, 30, 1309–1336) and Abi Jaber (2019, Ann. Appl. Probab., 29, 3155–3200).  相似文献   

16.
We consider a general local‐stochastic volatility model and an investor with exponential utility. For a European‐style contingent claim, whose payoff may depend on either a traded or nontraded asset, we derive an explicit approximation for both the buyer's and seller's indifference prices. For European calls on a traded asset, we translate indifference prices into an explicit approximation of the buyer's and seller's implied volatility surfaces. For European claims on a nontraded asset, we establish rigorous error bounds for the indifference price approximation. Finally, we implement our indifference price and implied volatility approximations in two examples.  相似文献   

17.
This paper studies the optimal investment problem with random endowment in an inventory‐based price impact model with competitive market makers. Our goal is to analyze how price impact affects optimal policies, as well as both pricing rules and demand schedules for contingent claims. For exponential market makers preferences, we establish two effects due to price impact: constrained trading and nonlinear hedging costs. To the former, wealth processes in the impact model are identified with those in a model without impact, but with constrained trading, where the (random) constraint set is generically neither closed nor convex. Regarding hedging, nonlinear hedging costs motivate the study of arbitrage free prices for the claim. We provide three such notions, which coincide in the frictionless case, but which dramatically differ in the presence of price impact. Additionally, we show arbitrage opportunities, should they arise from claim prices, can be exploited only for limited position sizes, and may be ignored if outweighed by hedging considerations. We also show that arbitrage‐inducing prices may arise endogenously in equilibrium, and that equilibrium positions are inversely proportional to the market makers' representative risk aversion. Therefore, large positions endogenously arise in the limit of either market maker risk neutrality, or a large number of market makers.  相似文献   

18.
We develop a framework for computing the total valuation adjustment (XVA) of a European claim accounting for funding costs, counterparty credit risk, and collateralization. Based on no‐arbitrage arguments, we derive backward stochastic differential equations associated with the replicating portfolios of long and short positions in the claim. This leads to the definition of buyer's and seller's XVA, which in turn identify a no‐arbitrage interval. In the case that borrowing and lending rates coincide, we provide a fully explicit expression for the unique XVA, expressed as a percentage of the price of the traded claim, and for the corresponding replication strategies. In the general case of asymmetric funding, repo, and collateral rates, we study the semilinear partial differential equations characterizing buyer's and seller's XVA and show the existence of a unique classical solution to it. To illustrate our results, we conduct a numerical study demonstrating how funding costs, repo rates, and counterparty risk contribute to determine the total valuation adjustment.  相似文献   

19.
The characteristic functions of many affine jump‐diffusion models, such as Heston's stochastic volatility model and all of its extensions, involve multivalued functions such as the complex logarithm. If we restrict the logarithm to its principal branch, as is done in most software packages, the characteristic function can become discontinuous, leading to completely wrong option prices if options are priced by Fourier inversion. In this paper, we prove without any restrictions that there is a formulation of the characteristic function in which the principal branch is the correct one. Because this formulation is easier to implement and numerically more stable than the so‐called rotation count algorithm of Kahl and Jäckel, we solely focus on its stability in this paper. This paper shows how complex discontinuities can be avoided in the Variance Gamma and Schöbel–Zhu models, as well as in the exact simulation algorithm of the Heston model, recently proposed by Broadie and Kaya.  相似文献   

20.
Using a suitable change of probability measure, we obtain a Poisson series representation for the arbitrage‐free price process of vulnerable contingent claims in a regime‐switching market driven by an underlying continuous‐time Markov process. As a result of this representation, along with a short‐time asymptotic expansion of the claim's price process, we develop an efficient novel method for pricing claims whose payoffs may depend on the full path of the underlying Markov chain. The proposed approach is applied to price not only simple European claims such as defaultable bonds, but also a new type of path‐dependent claims that we term self‐decomposable, as well as the important class of vulnerable call and put options on a stock. We provide a detailed error analysis and illustrate the accuracy and computational complexity of our method on several market traded instruments, such as defaultable bond prices, barrier options, and vulnerable call options. Using again our Poisson series representation, we show differentiability in time of the predefault price function of European vulnerable claims, which enables us to rigorously deduce Feynman‐Ka? representations for the predefault pricing function and new semimartingale representations for the price process of the vulnerable claim under both risk‐neutral and objective probability measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号