首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
We develop a framework for computing the total valuation adjustment (XVA) of a European claim accounting for funding costs, counterparty credit risk, and collateralization. Based on no‐arbitrage arguments, we derive backward stochastic differential equations associated with the replicating portfolios of long and short positions in the claim. This leads to the definition of buyer's and seller's XVA, which in turn identify a no‐arbitrage interval. In the case that borrowing and lending rates coincide, we provide a fully explicit expression for the unique XVA, expressed as a percentage of the price of the traded claim, and for the corresponding replication strategies. In the general case of asymmetric funding, repo, and collateral rates, we study the semilinear partial differential equations characterizing buyer's and seller's XVA and show the existence of a unique classical solution to it. To illustrate our results, we conduct a numerical study demonstrating how funding costs, repo rates, and counterparty risk contribute to determine the total valuation adjustment.  相似文献   

2.
The correction in value of an over‐the‐counter derivative contract due to counterparty risk under funding constraints is represented as the value of a dividend‐paying option on the value of the contract clean of counterparty risk and excess funding costs. This representation allows one to analyze the structure of this correction, the so‐called Credit Valuation Adjustment (CVA for short), in terms of replacement cost/benefits, credit cost/benefits, and funding cost/benefits. We develop a reduced‐form backward stochastic differential equations (BSDE) approach to the problem of pricing and hedging the CVA. In the Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of semilinear partial differential equations.  相似文献   

3.
This and the follow‐up paper deal with the valuation and hedging of bilateral counterparty risk on over‐the‐counter derivatives. Our study is done in a multiple‐curve setup reflecting the various funding constraints (or costs) involved, allowing one to investigate the question of interaction between bilateral counterparty risk and funding. The first task is to define a suitable notion of no arbitrage price in the presence of various funding costs. This is the object of this paper, where we develop an “additive, multiple curve” extension of the classical “multiplicative (discounted), one curve” risk‐neutral pricing approach. We derive the dynamic hedging interpretation of such an “additive risk‐neutral” price, starting by consistency with pricing by replication in the case of a complete market. This is illustrated by a completely solved example building over previous work by Burgard and Kjaer.  相似文献   

4.
We develop an arbitrage‐free valuation framework for bilateral counterparty risk, where collateral is included with possible rehypothecation. We show that the adjustment is given by the sum of two option payoff terms, where each term depends on the netted exposure, i.e., the difference between the on‐default exposure and the predefault collateral account. We then specialize our analysis to credit default swaps (CDS) as underlying portfolios, and construct a numerical scheme to evaluate the adjustment under a doubly stochastic default framework. In particular, we show that for CDS contracts a perfect collateralization cannot be achieved, even under continuous collateralization, if the reference entity’s and counterparty’s default times are dependent. The impact of rehypothecation, collateral margining frequency, and default correlation‐induced contagion is illustrated with numerical examples.  相似文献   

5.
A credit valuation adjustment (CVA) is an adjustment applied to the value of a derivative contract or a portfolio of derivatives to account for counterparty credit risk. Measuring CVA requires combining models of market and credit risk to estimate a counterparty's risk of default together with the market value of exposure to the counterparty at default. Wrong‐way risk refers to the possibility that a counterparty's likelihood of default increases with the market value of the exposure. We develop a method for bounding wrong‐way risk, holding fixed marginal models for market and credit risk and varying the dependence between them. Given simulated paths of the two models, a linear program computes the worst‐case CVA. We analyze properties of the solution and prove convergence of the estimated bound as the number of paths increases. The worst case can be overly pessimistic, so we extend the procedure by constraining the deviation of the joint model from a baseline reference model. Measuring the deviation through relative entropy leads to a tractable convex optimization problem that can be solved through the iterative proportional fitting procedure. Here, too, we prove convergence of the resulting estimate of the penalized worst‐case CVA and the joint distribution that attains it. We consider extensions with additional constraints and illustrate the method with examples.  相似文献   

6.
The problem of robust utility maximization in an incomplete market with volatility uncertainty is considered, in the sense that the volatility of the market is only assumed to lie between two given bounds. The set of all possible models (probability measures) considered here is nondominated. We propose studying this problem in the framework of second‐order backward stochastic differential equations (2BSDEs for short) with quadratic growth generators. We show for exponential, power, and logarithmic utilities that the value function of the problem can be written as the initial value of a particular 2BSDE and prove existence of an optimal strategy. Finally, several examples which shed more light on the problem and its links with the classical utility maximization one are provided. In particular, we show that in some cases, the upper bound of the volatility interval plays a central role, exactly as in the option pricing problem with uncertain volatility models.  相似文献   

7.
This paper deals with multidimensional dynamic risk measures induced by conditional g‐expectations. A notion of multidimensional g‐expectation is proposed to provide a multidimensional version of nonlinear expectations. By a technical result on explicit expressions for the comparison theorem, uniqueness theorem, and viability on a rectangle of solutions to multidimensional backward stochastic differential equations, some necessary and sufficient conditions are given for the constancy, monotonicity, positivity, and translatability properties of multidimensional conditional g‐expectations and multidimensional dynamic risk measures; we prove that a multidimensional dynamic g‐risk measure is nonincreasingly convex if and only if the generator g satisfies a quasi‐monotone increasingly convex condition. A general dual representation is given for the multidimensional dynamic convex g‐risk measure in which the penalty term is expressed more precisely. It is shown that model uncertainty leads to the convexity of risk measures. As to applications, we show how this multidimensional approach can be applied to measure the insolvency risk of a firm with interacting subsidiaries; optimal risk sharing for ‐tolerant g‐risk measures, and risk contribution for coherent g‐risk measures are investigated. Insurance g‐risk measure and other ways to induce g‐risk measures are also studied at the end of the paper.  相似文献   

8.
This paper introduces a dual problem to study a continuous‐time consumption and investment problem with incomplete markets and Epstein–Zin stochastic differential utilities. Duality between the primal and dual problems is established. Consequently, the optimal strategy of this consumption and investment problem is identified without assuming several technical conditions on market models, utility specifications, and agent's admissible strategies. Meanwhile, the minimizer of the dual problem is identified as the utility gradient of the primal value and is economically interpreted as the “least favorable” completion of the market.  相似文献   

9.
This paper studies multiperiod asset pricing theory in arbitrage‐free financial markets with proportional transaction costs. The mathematical formulation is based on a Euclidean space for weakly arbitrage‐free security markets and strongly arbitrage‐free security markets. We establish the weakly arbitrage‐free pricing theorem and the strongly arbitrage‐free pricing theorem.  相似文献   

10.
In this paper, we consider Asian options with counterparty risk under stochastic volatility models. We propose a simple way to construct stochastic volatility models through the market factor channel. In the proposed framework, we obtain an explicit pricing formula of Asian options with counterparty risk and illustrate the effects of systematic risk on Asian option prices. Specially, the U-shaped and inverted U-shaped curves appear when we keep the total risk of the underlying asset and the issuer's assets unchanged, respectively.  相似文献   

11.
A new class of risk measures called cash subadditive risk measures is introduced to assess the risk of future financial, nonfinancial, and insurance positions. The debated cash additive axiom is relaxed into the cash subadditive axiom to preserve the original difference between the numéraire of the current reserve amounts and future positions. Consequently, cash subadditive risk measures can model stochastic and/or ambiguous interest rates or defaultable contingent claims. Practical examples are presented, and in such contexts cash additive risk measures cannot be used. Several representations of the cash subadditive risk measures are provided. The new risk measures are characterized by penalty functions defined on a set of sublinear probability measures and can be represented using penalty functions associated with cash additive risk measures defined on some extended spaces. The issue of the optimal risk transfer is studied in the new framework using inf-convolution techniques. Examples of dynamic cash subadditive risk measures are provided via BSDEs where the generator can locally depend on the level of the cash subadditive risk measure.  相似文献   

12.
The left tail of the implied volatility skew, coming from quotes on out‐of‐the‐money put options, can be thought to reflect the market's assessment of the risk of a huge drop in stock prices. We analyze how this market information can be integrated into the theoretical framework of convex monetary measures of risk. In particular, we make use of indifference pricing by dynamic convex risk measures, which are given as solutions of backward stochastic differential equations, to establish a link between these two approaches to risk measurement. We derive a characterization of the implied volatility in terms of the solution of a nonlinear partial differential equation and provide a small time‐to‐maturity expansion and numerical solutions. This procedure allows to choose convex risk measures in a conveniently parameterized class, distorted entropic dynamic risk measures, which we introduce here, such that the asymptotic volatility skew under indifference pricing can be matched with the market skew. We demonstrate this in a calibration exercise to market implied volatility data.  相似文献   

13.
A continuous-time mean-variance portfolio selection problem is studied where all the market coefficients are random and the wealth process under any admissible trading strategy is not allowed to be below zero at any time. The trading strategy under consideration is defined in terms of the dollar amounts, rather than the proportions of wealth, allocated in individual stocks. The problem is completely solved using a decomposition approach. Specifically, a (constrained) variance minimizing problem is formulated and its feasibility is characterized. Then, after a system of equations for two Lagrange multipliers is solved, variance minimizing portfolios are derived as the replicating portfolios of some contingent claims, and the variance minimizing frontier is obtained. Finally, the efficient frontier is identified as an appropriate portion of the variance minimizing frontier after the monotonicity of the minimum variance on the expected terminal wealth over this portion is proved and all the efficient portfolios are found. In the special case where the market coefficients are deterministic, efficient portfolios are explicitly expressed as feedback of the current wealth, and the efficient frontier is represented by parameterized equations. Our results indicate that the efficient policy for a mean-variance investor is simply to purchase a European put option that is chosen, according to his or her risk preferences, from a particular class of options.  相似文献   

14.
This paper considers a non‐Markov control problem arising in a financial market where asset returns depend on hidden factors. The problem is non‐Markov because nonlinear filtering is required to make inference on these factors, and hence the associated dynamic program effectively takes the filtering distribution as one of its state variables. This is of significant difficulty because the filtering distribution is a stochastic probability measure of infinite dimension, and therefore the dynamic program has a state that cannot be differentiated in the traditional sense. This lack of differentiability means that the problem cannot be solved using a Hamilton–Jacobi–Bellman equation. This paper will show how the problem can be analyzed and solved using backward stochastic differential equations, with a key tool being the problem's dual formulation.  相似文献   

15.
We generalize Merton’s asset valuation approach to systems of multiple financial firms where cross‐ownership of equities and liabilities is present. The liabilities, which may include debts and derivatives, can be of differing seniority. We derive equations for the prices of equities and recovery claims under no‐arbitrage. An existence result and a uniqueness result are proven. Examples and an algorithm for the simultaneous calculation of all no‐arbitrage prices are provided. A result on capital structure irrelevance for groups of firms regarding externally held claims is discussed, as well as financial leverage and systemic risk caused by cross‐ownership.  相似文献   

16.
We consider the problem of optimal investment when agents take into account their relative performance by comparison to their peers. Given N interacting agents, we consider the following optimization problem for agent i, : where is the utility function of agent i, his portfolio, his wealth, the average wealth of his peers, and is the parameter of relative interest for agent i. Together with some mild technical conditions, we assume that the portfolio of each agent i is restricted in some subset . We show existence and uniqueness of a Nash equilibrium in the following situations:
  • ‐ unconstrained agents,
  • ‐ constrained agents with exponential utilities and Black–Scholes financial market.
We also investigate the limit when the number of agents N goes to infinity. Finally, when the constraints sets are vector spaces, we study the impact of the s on the risk of the market.  相似文献   

17.
We propose an approach to the valuation of payoffs in general semimartingale models of financial markets where prices are nonnegative. Each asset price can hit 0; we only exclude that this ever happens simultaneously for all assets. We start from two simple, economically motivated axioms, namely, absence of arbitrage (in the sense of NUPBR) and absence of relative arbitrage among all buy‐and‐hold strategies (called static efficiency). A valuation process for a payoff is then called semi‐efficient consistent if the financial market enlarged by that process still satisfies this combination of properties. It turns out that this approach lies in the middle between the extremes of valuing by risk‐neutral expectation and valuing by absence of arbitrage alone. We show that this always yields put‐call parity, although put and call values themselves can be nonunique, even for complete markets. We provide general formulas for put and call values in complete markets and show that these are symmetric and that both contain three terms in general. We also show that our approach recovers all the put‐call parity respecting valuation formulas in the classic theory as special cases, and we explain when and how the different terms in the put and call valuation formulas disappear or simplify. Along the way, we also define and characterize completeness for general semimartingale financial markets and connect this to the classic theory.  相似文献   

18.
We prove that in a discrete‐time market model the lower arbitrage bound of an American contingent claim is itself an arbitrage‐free price if and only if it corresponds to the price of the claim optimally exercised under some equivalent martingale measure.  相似文献   

19.
We consider a robust consumption‐investment problem under constant relative risk aversion and constant absolute risk aversion utilities. The time‐varying confidence sets are specified by Θ, a correspondence from [0, T] to the space of the Lévy triplets, and describe a priori drift, volatility, and jump information. For each possible measure, the log‐price processes of stocks are semimartingales, and the triplet of their differential characteristics is almost surely a measurable selector from the correspondence Θ. By proposing and investigating the global kernel, an optimal policy and a worst‐case measure are generated from a saddle point of the global kernel, and they constitute a saddle point of the objective function.  相似文献   

20.
This paper solves the consumption-investment problem under Epstein-Zin preferences on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not necessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize the optimal consumption and investment strategies using backward stochastic differential equations with superlinear growth on unbounded random horizons. This characterization, compared with the classical fixed-horizon result, involves an additional stochastic process that serves to capture the randomness of the horizon. As demonstrated in two concrete examples, changing from a fixed horizon to a random one drastically alters the optimal strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号