共查询到5条相似文献,搜索用时 3 毫秒
1.
In this paper, we study perpetual American call and put options in an exponential Lévy model. We consider a negative effective discount rate that arises in a number of financial applications including stock loans and real options, where the strike price can potentially grow at a higher rate than the original discount factor. We show that in this case a double continuation region arises and we identify the two critical prices. We also generalize this result to multiple stopping problems of Swing type, that is, when successive exercise opportunities are separated by i.i.d. random refraction times. We conduct an extensive numerical analysis for the Black–Scholes model and the jump‐diffusion model with exponentially distributed jumps. 相似文献
2.
We consider the problem of valuation of American options written on dividend‐paying assets whose price dynamics follow a multidimensional exponential Lévy model. We carefully examine the relation between the option prices, related partial integro‐differential variational inequalities, and reflected backward stochastic differential equations. In particular, we prove regularity results for the value function and obtain the early exercise premium formula for a broad class of payoff functions. 相似文献
3.
In this paper, we consider modeling of credit risk within the Libor market models. We extend the classical definition of the default‐free forward Libor rate and develop the rating based Libor market model to cover defaultable bonds with credit ratings. As driving processes for the dynamics of the default‐free and the predefault term structure of Libor rates, time‐inhomogeneous Lévy processes are used. Credit migration is modeled by a conditional Markov chain, whose properties are preserved under different forward Libor measures. Conditions for absence of arbitrage in the model are derived and valuation formulae for some common credit derivatives in this setup are presented. 相似文献
4.
This paper develops a novel class of hybrid credit‐equity models with state‐dependent jumps, local‐stochastic volatility, and default intensity based on time changes of Markov processes with killing. We model the defaultable stock price process as a time‐changed Markov diffusion process with state‐dependent local volatility and killing rate (default intensity). When the time change is a Lévy subordinator, the stock price process exhibits jumps with state‐dependent Lévy measure. When the time change is a time integral of an activity rate process, the stock price process has local‐stochastic volatility and default intensity. When the time change process is a Lévy subordinator in turn time changed with a time integral of an activity rate process, the stock price process has state‐dependent jumps, local‐stochastic volatility, and default intensity. We develop two analytical approaches to the pricing of credit and equity derivatives in this class of models. The two approaches are based on the Laplace transform inversion and the spectral expansion approach, respectively. If the resolvent (the Laplace transform of the transition semigroup) of the Markov process and the Laplace transform of the time change are both available in closed form, the expectation operator of the time‐changed process is expressed in closed form as a single integral in the complex plane. If the payoff is square integrable, the complex integral is further reduced to a spectral expansion. To illustrate our general framework, we time change the jump‐to‐default extended constant elasticity of variance model of Carr and Linetsky (2006) and obtain a rich class of analytically tractable models with jumps, local‐stochastic volatility, and default intensity. These models can be used to jointly price equity and credit derivatives. 相似文献
5.
EFFICIENT PRICING OF BARRIER OPTIONS AND CREDIT DEFAULT SWAPS IN LÉVY MODELS WITH STOCHASTIC INTEREST RATE 下载免费PDF全文
Recently, advantages of conformal deformations of the contours of integration in pricing formulas for European options have been demonstrated in the context of wide classes of Lévy models, the Heston model, and other affine models. Similar deformations were used in one‐factor Lévy models to price options with barrier and lookback features and credit default swaps (CDSs). In the present paper, we generalize this approach to models, where the dynamics of the assets is modeled as , where X is a Lévy process, and the interest rate is stochastic. Assuming that X and r are independent, and , the infinitesimal generator of the pricing semigroup in the model for the short rate, satisfies weak regularity conditions, which hold for popular models of the short rate, we develop a variation of the pricing procedure for Lévy models which is almost as fast as in the case of the constant interest rate. Numerical examples show that about 0.15 second suffices to calculate prices of 8 options of same maturity in a two‐factor model with the error tolerance and less; in a three‐factor model, accuracy of order 0.001–0.005 is achieved in about 0.2 second. Similar results are obtained for quanto CDS, where an additional stochastic factor is the exchange rate. We suggest a class of Lévy models with the stochastic interest rate driven by 1–3 factors, which allows for fast calculations. This class can satisfy the current regulatory requirements for banks mandating sufficiently sophisticated credit risk models. 相似文献