首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a dependent Sparre Andersen risk process in which the joint density of the interclaim time and the resulting claim severity satisfies the factorization as in Willmot and Woo is considered. We study a generalization of the Gerber–Shiu function (i) whose penalty function further depends on the surplus level immediately after the second last claim before ruin; and (ii) which involves the moments of the discounted aggregate claim costs until ruin. The generalized discounted density with a moment-based component proposed in Cheung plays a key role in deriving recursive defective renewal equations. We pay special attention to the case where the marginal distribution of the interclaim times is Coxian, and the required components in the recursion are obtained. A reverse type of dependency structure, where the claim severities follow a combination of exponentials, is also briefly discussed, and this leads to a nice explicit expression for the expected discounted aggregate claims until ruin. Our results are applied to generate some numerical examples involving (i) the covariance of the time of ruin and the discounted aggregate claims until ruin; and (ii) the expectation, variance and third central moment of the discounted aggregate claims until ruin.  相似文献   

2.
This paper presents an explicit characterization for the joint probability density function of the surplus immediately prior to ruin and the deficit at ruin for a general risk process, which includes the Sparre-Andersen risk model with phase-type inter-claim times and claim sizes. The model can also accommodate a Markovian arrival process which enables claim sizes to be correlated with the inter-claim times. The marginal density function of the surplus immediately prior to ruin is specifically considered. Several numerical examples are presented to illustrate the application of this result.  相似文献   

3.
The ruin probability of an insurance company is a central topic in risk theory. We consider the classical Poisson risk model when the claim size distribution and the Poisson arrival rate are unknown. Given a sample of inter-arrival times and corresponding claims, we propose a semiparametric estimator of the ruin probability. We establish properties of strong consistency and asymptotic normality of the estimator and study bootstrap confidence bands. Further, we present a simulation example in order to investigate the finite sample properties of the proposed estimator.  相似文献   

4.
We consider the classical Sparre-Andersen risk process perturbed by a Wiener process, and study the joint distribution of the ruin time and the aggregate claim amounts until ruin by determining its Laplace transform. This is first done when the claim amounts follow respectively an exponential/Phase-type distribution, in which case we also compute the distribution of recovery time and study the case of a barrier dividend. Then the general distribution is considered when ruin occurs by oscillation, in which case a renewal equation is derived.  相似文献   

5.
We consider a Markov-modulated risk model in which the claim inter-arrivals, amounts and premiums are influenced by an external Markovian environment process. A system of Laplace transforms of the probabilities of the severity of ruin, given the initial environment state, is established from a system of integro-differential equations derived by Snoussi [The severity of ruin in Markov-modulated risk models Schweiz Aktuarver. Mitt., 2002, 1, 31–43]. In the two-state model, explicit formulas for probabilities of the severity of ruin are derived, when the initial reserve is zero or when both claim amount distributions are from the rational family. Numerical illustrations are also given.  相似文献   

6.
According to Solvency II directive, each insurance company could determine solvency capital requirements using its own, tailor made, internal model. This highlights the urgency of having fast numerical tools based on practically-oriented mathematical models. From the Solvency II perspective discrete time framework seems to be the most relevant one. In this paper, we propose a number of fast and accurate approximations of ruin probabilities involving some integral operator and examine them along strictly theoretical as well as numerical lines. For a few claim distributions the approximations are shown to be exact. In general, we prove that they converge with an exponential rate to the exact ruin probabilities without any restrictive assumptions on the claim distribution. A fast algorithm to approximate ruin probabilities by a numerical fixed point of the involved integral operator is given. As an application, ruin probabilities for, e.g. normally and Weibull – distributed claims are computed. Comparisons with discrete time counterparts of some continuous time approximation methods are also carried out. Numerical studies show that our approximations are precise both for small and large values of the initial surplus u. In contrast, the empirical De Vylder-type ones strongly depend on the claim distributions and are less precise for small and medium values of u.  相似文献   

7.
8.
In this paper, we consider an extension to the classical compound Poisson risk model. Historically, it has been assumed that the claim amounts and claim inter-arrival times are independent. In this contribution, a dependence structure between the claim amount and the interclaim time is introduced through a Farlie–Gumbel–Morgenstern copula. In this framework, we derive the integro-differential equation and the Laplace transform (LT) of the Gerber–Shiu discounted penalty function. An explicit expression for the LT of the discounted value of a general function of the deficit at ruin is obtained for claim amounts having an exponential distribution.  相似文献   

9.
We extend the classical compound Poisson risk model to consider the distribution of the maximum surplus before ruin where the claim sizes depend on inter-claim times via the Farlie–Gumbel–Morgenstern copula. We derive an integro-differential equation with certain boundary conditions for this distribution, of which the Laplace transform is provided. We obtain the renewal equation and explicit expressions for this distribution are derived when the claim amounts are exponentially distributed. Finally, we present numerical examples.  相似文献   

10.
In this paper, we present a nonparametric estimator for ruin probability in the classical risk model with unknown claim size distribution. We construct the estimator by Fourier inversion and kernel density estimation method. Under some conditions imposed on the kernel, bandwidth and claim size density, we present some large sample properties of the estimator. Some simulation studies are also given to show the finite sample performance of the estimator.  相似文献   

11.
ABSTRACT

This paper considers a Cramér–Lundberg risk setting, where the components of the underlying model change over time. We allow the more general setting of the cumulative claim process being modeled as a spectrally positive Lévy process. We provide an intuitively appealing mechanism to create such parameter uncertainty: at Poisson epochs, we resample the model components from a finite number of d settings. It results in a setup that is particularly suited to describe situations in which the risk reserve dynamics are affected by external processes. We extend the classical Cramér–Lundberg approximation (asymptotically characterizing the all-time ruin probability in a light-tailed setting) to this more general setup. In addition, for the situation that the driving Lévy processes are sums of Brownian motions and compound Poisson processes, we find an explicit uniform bound on the ruin probability. In passing we propose an importance-sampling algorithm facilitating efficient estimation, and prove it has bounded relative error. In a series of numerical experiments we assess the accuracy of the asymptotics and bounds, and illustrate that neglecting the resampling can lead to substantial underestimation of the risk.  相似文献   

12.
Abstract

Growing research interest has been shown in finite-time ruin probabilities for discrete risk processes, even though the literature is not as extensive as for continuous-time models. The general approach is through the so-called Gerber-Shiu discounted penalty function, obtained for large families of claim severities and discrete risk models. This paper proposes another approach to deriving recursive and explicit formulas for finite-time ruin probabilities with exponential or geometric claim severities. The proposed method, as compared to the general Gerber-Shiu approach, is able to provide simpler derivation and straightforward expressions for these two special families of claims.  相似文献   

13.
In this paper, we propose a class of infinite-dimensional phase-type distributions with finitely many parameters as models for heavy tailed distributions. The class of finite-dimensional phase-type distributions is dense in the class of distributions on the positive reals and may hence approximate any such distribution. We prove that formulas from renewal theory, and with a particular attention to ruin probabilities, which are true for common phase-type distributions also hold true for the infinite-dimensional case. We provide algorithms for calculating functionals of interest such as the renewal density and the ruin probability. It might be of interest to approximate a given heavy tailed distribution of some other type by a distribution from the class of infinite-dimensional phase-type distributions and to this end we provide a calibration procedure which works for the approximation of distributions with a slowly varying tail. An example from risk theory, comparing ruin probabilities for a classical risk process with Pareto distributed claim sizes, is presented and exact known ruin probabilities for the Pareto case are compared to the ones obtained by approximating by an infinite-dimensional hyper-exponential distribution.  相似文献   

14.
In this paper, a Sparre Andersen risk process with arbitrary interclaim time distribution is considered. We analyze various ruin-related quantities in relation to the expected present value of total operating costs until ruin, which was first proposed by Cai et al. [(2009a). On the expectation of total discounted operating costs up to default and its applications. Advances in Applied Probability 41(2), 495–522] in the piecewise-deterministic compound Poisson risk model. The analysis in this paper is applicable to a wide range of quantities including (i) the insurer's expected total discounted utility until ruin; and (ii) the expected discounted aggregate claim amounts until ruin. On one hand, when claims belong to the class of combinations of exponentials, explicit results are obtained using the ruin theoretic approach of conditioning on the first drop via discounted densities (e.g. Willmot [(2007). On the discounted penalty function in the renewal risk model with general interclaim times. Insurance: Mathematics and Economics 41(1), 17–31]). On the other hand, without any distributional assumption on the claims, we also show that the expected present value of total operating costs until ruin can be expressed in terms of some potential measures, which are common tools in the literature of Lévy processes (e.g. Kyprianou [(2014). Fluctuations of L'evy processes with applications: introductory lectures, 2nd ed. Berlin Heidelberg: Springer-Verlag]). These potential measures are identified in terms of the discounted distributions of ascending and descending ladder heights. We shall demonstrate how the formulas resulting from the two seemingly different methods can be reconciled. The cases of (i) stationary renewal risk model and (ii) surplus-dependent premium are briefly discussed as well. Some interesting invariance properties in the former model are shown to hold true, extending a well-known ruin probability result in the literature. Numerical illustrations concerning the expected total discounted utility until ruin are also provided.  相似文献   

15.
Recently, some recursive formulas have been obtained for the ruin probability evaluated at or before claim instants for a surplus process under the assumptions that the claim sizes are independent, nonhomogeneous Erlang distributed, and independent of the inter-claim revenues, which are assumed to be independent, identically distributed, following an arbitrary distribution. Based on numerical examples, a conjecture has also been stated relating the order in which the claims arrive to the magnitude of the corresponding ruin probability. In this paper, we prove this conjecture in the particular case when the claims are all exponentially distributed with different parameters.  相似文献   

16.
Abstract

The probability of ruin is investigated under the influence of a premium rate which varies with the level of free reserves. Section 4 develops a number of inequalities for the ruin probability, establishing upper and lower bounds for it in Theorem 4. Theorem 5 gives an expression for the ruin probability, and it is seen in Section 5 that this amounts to a generalization of the ruin probability given by Gerber for the special case of a negative exponential claim size distribution. In that same section it is shown the Lundberg's inequality is not derivable from the generalized theory of Section 4, and this is seen as a drawback of the methods used there. Sections 6 and 7 deal with some special cases, including claim size distributions with monotone failure rates. Section 8 shows that, in contrast with the result for a constant premium that the probability of ruin for zero initial reserve is independent of the claim size distribution, the same result does not hold when the premium rate is allowed to vary. Section 9 gives some comments on the possible effect of “dangerousness” of a claim size distribution on ruin probability.  相似文献   

17.
The paper deals with a ruin problem, where there is a Parisian delay and a lower ultimate bankrupt barrier. In this problem, we will say that a risk process get ruined when it stays below zero longer than a fixed amount of time ζ > 0 or goes below a fixed level ?a. We focus on a general spectrally negative Lévy insurance risk process. For this class of processes, we identify the Laplace transform of the ruin probability in terms of so-called q-scale functions. We find its Cramér-type and convolution-equivalent asymptotics when reserves tends to infinity. Finally, we analyze few explicit examples.  相似文献   

18.
In this paper, we first study orders, valid up to a certain positive initial surplus, between a pair of ruin probabilities resulting from two individual claim size random variables for corresponding continuous time surplus processes perturbed by diffusion. The results are then applied to obtain a smooth upper (lower) bound for the underlying ruin probability; the upper (lower) bound is constructed from exponentially distributed claims, provided that the mean residual lifetime function of the underlying random variable is non-decreasing (non-increasing). Finally, numerical examples are given to illustrate the constructed upper bounds for ruin probabilities with comparisons to some existing ones.  相似文献   

19.
The structural model uses the firm-value process and the default threshold to obtain the implied credit spread. Merton’s (J Finance 29:449–470, 1974) credit spread is reported too small compared to the observed market spread. Zhou (J Bank Finance 25:2015–2040, 2001) proposes a jump-diffusion firm-value process and obtains a credit spread that is closer to the observed market spread. Going in a different direction, the reduced-form model uses the observed market credit spread to obtain the probability of default and the mean recovery rate. We use a jump-diffusion firm-value process and the observed credit spread to obtain the implied jump distribution. Therefore, the discrepancy in credit spreads between the structural model and the reduced-form model can be removed. From the market credit spread, we obtain the implied probability of default and the mean recovery rate. When the solvency-ratio process in credit risk and the surplus process in ruin theory both follow jump-diffusion processes, we show a bridge between ruin theory and credit risk so that results developed in ruin theory can be used to develop analogous results in credit risk. Specifically, when the jump is Logexponentially distributed, it results in a Beta distributed recovery rate that is close to market experience. For bonds of multiple seniorities, we obtain closed-form solutions of the mean and variance of the recovery rate. We prove that the defective renewal equation still holds, even if the jumps are possibly negative. Therefore, we can use ruin theory as a methodology for assessing credit ratings.   相似文献   

20.
Abstract

An explicit solution for the probability of ruin in the presence of an absorbing upper barrier was developed by Segerdahl (1970) for the particular case in which both the interoccurrence times between successive claims and the single claim amounts follow an exponential distribution with unit mean. In this paper we show that his method of solution may be extended to produce explicit solutions for two more general types of single claim amount distribution. These are the gamma distribution, denoted γ(a), where a is an integer, and the mixed exponential distribution. Comparisons are drawn between this approach when the upper barrier tends to infinity, and the classical solution for ruin probability in these particular cases given in Cramér (1955).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号