首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We generalize the weak instrument robust score or Lagrange multiplier and likelihood ratio instrumental variables (IV) statistics towards multiple parameters and a general covariance matrix so they can be used in the generalized method of moments (GMM). The GMM extension of Moreira's [2003. A conditional likelihood ratio test for structural models. Econometrica 71, 1027–1048] conditional likelihood ratio statistic towards GMM preserves its expression except that it becomes conditional on a statistic that tests the rank of a matrix. We analyze the spurious power decline of Kleibergen's [2002. Pivotal statistics for testing structural parameters in instrumental variables regression. Econometrica 70, 1781–1803, 2005. Testing parameters in GMM without assuming that they are identified. Econometrica 73, 1103–1124] score statistic and show that an independent misspecification pre-test overcomes it. We construct identification statistics that reflect if the confidence sets of the parameters are bounded. A power study and the possible shapes of confidence sets illustrate the analysis.  相似文献   

2.
3.
This paper analyzes many weak moment asymptotics under the possibility of similar moments. The possibility of highly related moments arises when there are many of them. Knight and Fu (2000) designate the issue of similar regressors as the “nearly singular” design in the least squares case. In the nearly singular design, the sample variance converges to a singular limit term. However, Knight and Fu (2000) assume that on the nullspace of the limit term, the difference between the sample variance and the singular matrix converges in probability to a positive definite matrix when multiplied by an appropriate rate. We consider specifically Continuous Updating Estimator (CUE) with many weak moments under nearly singular design. We show that the nearly singular design affects the form of the limit of the many weak moment asymptotics that is introduced by Newey and Windmeijer (2009a). However, the estimator is still consistent and the Wald test has the standard χ2χ2 limit.  相似文献   

4.
This paper introduces a rank-based test for the instrumental variables regression model that dominates the Anderson–Rubin test in terms of finite sample size and asymptotic power in certain circumstances. The test has correct size for any distribution of the errors with weak or strong instruments. The test has noticeably higher power than the Anderson–Rubin test when the error distribution has thick tails and comparable power otherwise. Like the Anderson–Rubin test, the rank tests considered here perform best, relative to other available tests, in exactly identified models.  相似文献   

5.
We provide analytical formulae for the asymptotic bias (ABIAS) and mean-squared error (AMSE) of the IV estimator, and obtain approximations thereof based on an asymptotic scheme which essentially requires the expectation of the first stage F-statistic to converge to a finite (possibly small) positive limit as the number of instruments approaches infinity. Our analytical formulae can be viewed as generalizing the bias and MSE results of [Richardson and Wu 1971. A note on the comparison of ordinary and two-stage least squares estimators. Econometrica 39, 973–982] to the case with nonnormal errors and stochastic instruments. Our approximations are shown to compare favorably with approximations due to [Morimune 1983. Approximate distributions of kk-class estimators when the degree of overidentifiability is large compared with the sample size. Econometrica 51, 821–841] and [Donald and Newey 2001. Choosing the number of instruments. Econometrica 69, 1161–1191], particularly when the instruments are weak. We also construct consistent estimators for the ABIAS and AMSE, and we use these to further construct a number of bias corrected OLS and IV estimators, the properties of which are examined both analytically and via a series of Monte Carlo experiments.  相似文献   

6.
Testing with many weak instruments   总被引:1,自引:0,他引:1  
This paper establishes the asymptotic distributions of the likelihood ratio (LR), Anderson–Rubin (AR), and Lagrange multiplier (LM) test statistics under “many weak IV asymptotics.” These asymptotics are relevant when the number of IVs is large and the coefficients on the IVs are relatively small. The asymptotic results hold under the null and under suitable alternatives. Hence, power comparisons can be made.  相似文献   

7.
8.
    
I derive the exact distribution of the exact determined instrumental variable estimator using a geometric approach. The approach provides a decomposition of the exact estimator. The results show that by geometric reasoning one may efficiently derive the distribution of the estimation error. The often striking non‐normal shape of the instrumental variable estimator, in the case of weak instruments and small samples, follows intuitively by the geometry of the problem. The method allows for intuitive interpretations of how the shape of the distribution is determined by instrument quality and endogeneity. The approach can also be used when deriving the exact distribution of any ratio of stochastic variables.  相似文献   

9.
There are many environments where knowledge of a structural relationship is required to answer questions of interest. Also, nonseparability of a structural disturbance is a key feature of many models. Here, we consider nonparametric identification and estimation of a model that is monotonic in a nonseparable scalar disturbance, which disturbance is independent of instruments. This model leads to conditional quantile restrictions. We give local identification conditions for the structural equations from those quantile restrictions. We find that a modified completeness condition is sufficient for local identification. We also consider estimation via a nonparametric minimum distance estimator. The estimator minimizes the sum of squares of predicted values from a nonparametric regression of the quantile residual on the instruments. We show consistency of this estimator.  相似文献   

10.
Nearly-Singular design relaxes the nonsingularity assumption of the limit weight matrix in GMM, and the nonsingularity of the limit variance matrix for the first order conditions in GEL. The sample versions of these matrices are nonsingular, but in large samples we assume these sample matrices converge to a singular matrix. This can result in size distortions for the overidentifying restrictions test and large bias for the estimators. This nearly-singular design may occur because of the similar instruments in these matrices. We derive the large sample theory for GMM and GEL estimators under nearly-singular design. The rate of convergence of the estimators is slower than root nn.  相似文献   

11.
We consider the estimation of the coefficients of a linear structural equation in a simultaneous equation system when there are many instrumental variables. We derive some asymptotic properties of the limited information maximum likelihood (LIML) estimator when the number of instruments is large; some of these results are new as well as old, and we relate them to results in some recent studies. We have found that the variance of the limiting distribution of the LIML estimator and its modifications often attain the asymptotic lower bound when the number of instruments is large and the disturbance terms are not necessarily normally distributed, that is, for the micro-econometric models of some cases recently called many instruments and many weak instruments.  相似文献   

12.
13.
14.
    
This paper shows how valid inferences can be made when an instrumental variable does not perfectly satisfy the orthogonality condition. When there is a mild violation of the orthogonality condition, the Anderson and Rubin (1949) test is oversized. In order to correct this problem, the fractionally resampled Anderson-Rubin test is derived by modifying Wu’s (1990) resampling technique. We select half of the sample when resampling and obtain valid but conservative critical values. Simulations show that our technique performs well even with moderate to large violation of exogeneity when there is a finite sample correction for the block size choice.  相似文献   

15.
We propose a novel statistic to test the rank of a matrix. The rank statistic overcomes deficiencies of existing rank statistics, like: a Kronecker covariance matrix for the canonical correlation rank statistic of Anderson [Annals of Mathematical Statistics (1951), 22, 327–351] sensitivity to the ordering of the variables for the LDU rank statistic of Cragg and Donald [Journal of the American Statistical Association (1996), 91, 1301–1309] and Gill and Lewbel [Journal of the American Statistical Association (1992), 87, 766–776] a limiting distribution that is not a standard chi-squared distribution for the rank statistic of Robin and Smith [Econometric Theory (2000), 16, 151–175] usage of numerical optimization for the objective function statistic of Cragg and Donald [Journal of Econometrics (1997), 76, 223–250] and ignoring the non-negativity restriction on the singular values in Ratsimalahelo [2002, Rank test based on matrix perturbation theory. Unpublished working paper, U.F.R. Science Economique, University de Franche-Comté]. In the non-stationary cointegration case, the limiting distribution of the new rank statistic is identical to that of the Johansen trace statistic.  相似文献   

16.
Projection-based tests for subsets of parameters are useful because they do not over-reject the true parameter values when either it is difficult to estimate the nuisance parameters or their identification status is questionable. However, they are also often criticized for being overly conservative. We overcome this conservativeness by introducing a new projection-based test that is more powerful than the traditional projection-based tests. The new test is even asymptotically equivalent to the related plug-in-based tests when all the parameters are identified. Extension to models with weakly identified parameters shows that the new test is not dominated by the related plug-in-based tests.  相似文献   

17.
Principal components estimation and identification of static factors   总被引:1,自引:0,他引:1  
It is known that the principal component estimates of the factors and the loadings are rotations of the underlying latent factors and loadings. We study conditions under which the latent factors can be estimated asymptotically without rotation. We derive the limiting distributions for the estimated factors and factor loadings when NN and TT are large and make precise how identification of the factors affects inference based on factor augmented regressions. We also consider factor models with additive individual and time effects. The asymptotic analysis can be modified to analyze identification schemes not considered in this analysis.  相似文献   

18.
We consider model identification for infinite variance autoregressive time series processes. It is shown that a consistent estimate of autoregressive model order can be obtained by minimizing Akaike’s information criterion, and we use all-pass models to identify noncausal autoregressive processes and estimate the order of noncausality (the number of roots of the autoregressive polynomial inside the unit circle in the complex plane). We examine the performance of the order selection procedures for finite samples via simulation, and use the techniques to fit a noncausal autoregressive model to stock market trading volume data.  相似文献   

19.
In this paper we propose a chi-square test for identification. Our proposed test statistic is based on the distance between two shrinkage extremum estimators. The two estimators converge in probability to the same limit when identification is strong, and their asymptotic distributions are different when identification is weak. The proposed test is consistent not only for the alternative hypothesis of no identification but also for the alternative of weak identification, which is confirmed by our Monte Carlo results. We apply the proposed technique to test whether the structural parameters of a representative Taylor-rule monetary policy reaction function are identified.  相似文献   

20.
We develop a testing procedure that is robust to identification quality in an instrumental quantile model. In order to reduce the computational burden, a multi-step approach is taken, and a two-step Anderson–Rubin (AR) statistic is considered. We then propose an orthogonal decomposition of the AR statistic, where the null distribution of each component does not depend on the assumption of a full rank of the Jacobian. Power experiments are conducted, and inferences on returns to schooling using the Angrist and Krueger data are considered as an empirical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号