首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test between the three alternatives in practice. We further propose a test statistic for testing the null hypothesis of random effects against fixed effects in a nonparametric panel data regression model. Simulations are used to examine the finite sample performance of the proposed estimators and the test statistics.  相似文献   

2.
We develop methods for inference in nonparametric time-varying fixed effects panel data models that allow for locally stationary regressors and for the time series length T and cross-section size N both being large. We first develop a pooled nonparametric profile least squares dummy variable approach to estimate the nonparametric function, and establish the optimal convergence rate and asymptotic normality of the resultant estimator. We then propose a test statistic to check whether the bivariate nonparametric function is time-varying or the time effect is separable, and derive the asymptotic distribution of the proposed test statistic. We present several simulated examples and two real data analyses to illustrate the finite sample performance of the proposed methods.  相似文献   

3.
Estimation of spatial autoregressive panel data models with fixed effects   总被引:13,自引:0,他引:13  
This paper establishes asymptotic properties of quasi-maximum likelihood estimators for SAR panel data models with fixed effects and SAR disturbances. A direct approach is to estimate all the parameters including the fixed effects. Because of the incidental parameter problem, some parameter estimators may be inconsistent or their distributions are not properly centered. We propose an alternative estimation method based on transformation which yields consistent estimators with properly centered distributions. For the model with individual effects only, the direct approach does not yield a consistent estimator of the variance parameter unless T is large, but the estimators for other common parameters are the same as those of the transformation approach. We also consider the estimation of the model with both individual and time effects.  相似文献   

4.
Estimating dynamic panel data discrete choice models with fixed effects   总被引:1,自引:0,他引:1  
This paper considers the estimation of dynamic binary choice panel data models with fixed effects. It is shown that the modified maximum likelihood estimator (MMLE) used in this paper reduces the order of the bias in the maximum likelihood estimator from O(T-1) to O(T-2), without increasing the asymptotic variance. No orthogonal reparametrization is needed. Monte Carlo simulations are used to evaluate its performance in finite samples where T is not large. In probit and logit models containing lags of the endogenous variable and exogenous variables, the estimator is found to have a small bias in a panel with eight periods. A distinctive advantage of the MMLE is its general applicability. Estimation and relevance of different policy parameters of interest in this kind of models are also addressed.  相似文献   

5.
Detecting and modeling structural changes in time series models have attracted great attention. However, relatively little effort has been paid to the testing of structural changes in panel data models despite their increasing importance in economics and finance. In this paper, we propose a new approach to testing structural changes in panel data models. Unlike the bulk of the literature on structural changes, which focuses on detection of abrupt structural changes, we consider smooth structural changes for which model parameters are unknown deterministic smooth functions of time except for a finite number of time points. We use nonparametric local smoothing method to consistently estimate the smooth changing parameters and develop two consistent tests for smooth structural changes in panel data models. The first test is to check whether all model parameters are stable over time. The second test is to check potential time-varying interaction while allowing for a common trend. Both tests have an asymptotic N(0,1) distribution under the null hypothesis of parameter constancy and are consistent against a vast class of smooth structural changes as well as abrupt structural breaks with possibly unknown break points alternatives. Simulation studies show that the tests provide reliable inference in finite samples and two empirical examples with respect to a cross-country growth model and a capital structure model are discussed.  相似文献   

6.
In dynamic panel regression, when the variance ratio of individual effects to disturbance is large, the system‐GMM estimator will have large asymptotic variance and poor finite sample performance. To deal with this variance ratio problem, we propose a residual‐based instrumental variables (RIV) estimator, which uses the residual from regressing Δyi,t?1 on as the instrument for the level equation. The RIV estimator proposed is consistent and asymptotically normal under general assumptions. More importantly, its asymptotic variance is almost unaffected by the variance ratio of individual effects to disturbance. Monte Carlo simulations show that the RIV estimator has better finite sample performance compared to alternative estimators. The RIV estimator generates less finite sample bias than difference‐GMM, system‐GMM, collapsing‐GMM and Level‐IV estimators in most cases. Under RIV estimation, the variance ratio problem is well controlled, and the empirical distribution of its t‐statistic is similar to the standard normal distribution for moderate sample sizes.  相似文献   

7.
Quantile regression for dynamic panel data with fixed effects   总被引:4,自引:0,他引:4  
This paper studies a quantile regression dynamic panel model with fixed effects. Panel data fixed effects estimators are typically biased in the presence of lagged dependent variables as regressors. To reduce the dynamic bias, we suggest the use of the instrumental variables quantile regression method of Chernozhukov and Hansen (2006) along with lagged regressors as instruments. In addition, we describe how to employ the estimated models for prediction. Monte Carlo simulations show evidence that the instrumental variables approach sharply reduces the dynamic bias, and the empirical levels for prediction intervals are very close to nominal levels. Finally, we illustrate the procedures with an application to forecasting output growth rates for 18 OECD countries.  相似文献   

8.
Motivated by the first-differencing method for linear panel data models, we propose a class of iterative local polynomial estimators for nonparametric dynamic panel data models with or without exogenous regressors. The estimators utilize the additive structure of the first-differenced model—the fact that the two additive components have the same functional form, and the unknown function of interest is implicitly defined as a solution of a Fredholm integral equation of the second kind. We establish the uniform consistency and asymptotic normality of the estimators. We also propose a consistent test for the correct specification of linearity in typical dynamic panel data models based on the L2L2 distance of our nonparametric estimates and the parametric estimates under the linear restriction. We derive the asymptotic distributions of the test statistic under the null hypothesis and a sequence of Pitman local alternatives, and prove its consistency against global alternatives. Simulations suggest that the proposed estimators and tests perform well for finite samples. We apply our new method to study the relationships among economic growth, the initial economic condition and capital accumulation, and find a significant nonlinear relation between economic growth and the initial economic condition.  相似文献   

9.
We propose a consistent test for a linear functional form against a nonparametric alternative in a fixed effects panel data model. We show that the test has a limiting standard normal distribution under the null hypothesis, and show that the test is a consistent test. We also establish the asymptotic validity of a bootstrap procedure which is used to better approximate the finite sample null distribution of the test statistic. Simulation results show that the proposed test performs well for panel data with a large number of cross-sectional units and a finite number of observations across time.  相似文献   

10.
Estimates of technical inefficiency based on fixed effects estimation of the stochastic frontier model with panel data are biased upward. Previous work has attempted to correct this bias using the bootstrap, but in simulations the bootstrap corrects only part of the bias. The usual panel jackknife is based on the assumption that the bias is of order T −1 and is similar to the bootstrap. We show that when there is a tie or a near tie for the best firm, the bias is of order T −1/2, not T −1, and this calls for a different form of the jackknife. The generalized panel jackknife is quite successful in removing the bias. However, the resulting estimates have a large variance.  相似文献   

11.
This paper introduces large-T bias-corrected estimators for nonlinear panel data models with both time invariant and time varying heterogeneity. These models include systems of equations with limited dependent variables and unobserved individual effects, and sample selection models with unobserved individual effects. Our two-step approach first estimates the reduced form by fixed effects procedures to obtain estimates of the time varying heterogeneity underlying the endogeneity/selection bias. We then estimate the primary equation by fixed effects including an appropriately constructed control variable from the reduced form estimates as an additional explanatory variable. The fixed effects approach in this second step captures the time invariant heterogeneity while the control variable accounts for the time varying heterogeneity. Since either or both steps might employ nonlinear fixed effects procedures it is necessary to bias adjust the estimates due to the incidental parameters problem. This problem is exacerbated by the two-step nature of the procedure. As these two-step approaches are not covered in the existing literature we derive the appropriate correction thereby extending the use of large-T bias adjustments to an important class of models. Simulation evidence indicates our approach works well in finite samples and an empirical example illustrates the applicability of our estimator.  相似文献   

12.
This paper proposes a new instrumental variables estimator for a dynamic panel model with fixed effects with good bias and mean squared error properties even when identification of the model becomes weak near the unit circle. We adopt a weak instrument asymptotic approximation to study the behavior of various estimators near the unit circle. We show that an estimator based on long differencing the model is much less biased than conventional implementations of the GMM estimator for the dynamic panel model. We also show that under the weak instrument approximation conventional GMM estimators are dominated in terms of mean squared error by an estimator with far less moment conditions. The long difference (LD) estimator mimics the infeasible optimal procedure through its reliance on a small set of moment conditions.  相似文献   

13.
This paper studies robust inference for linear panel models with fixed effects in the presence of heteroskedasticity and spatiotemporal dependence of unknown forms. We propose a bivariate kernel covariance estimator that nests existing estimators as special cases. Our estimator improves upon existing estimators in terms of robustness, efficiency, and adaptiveness. For distributional approximations, we considered two types of asymptotics: the increasing-smoothing asymptotics and the fixed-smoothing asymptotics. Under the former asymptotics, the Wald statistic based on our covariance estimator converges to a chi-square distribution. Under the latter asymptotics, the Wald statistic is asymptotically equivalent to a distribution that can be well approximated by an F distribution. Simulation results show that our proposed testing procedure works well in finite samples.  相似文献   

14.
Recent literature on panel data emphasizes the importance of accounting for time-varying unobservable individual effects, which may stem from either omitted individual characteristics or macro-level shocks that affect each individual unit differently. In this paper, we propose a simple specification test of the null hypothesis that the individual effects are time-invariant against the alternative that they are time-varying. Our test is an application of Hausman (1978) testing procedure and can be used for any generalized linear model for panel data that admits a sufficient statistic for the individual effect. This is a wide class of models which includes the Gaussian linear model and a variety of nonlinear models typically employed for discrete or categorical outcomes. The basic idea of the test is to compare two alternative estimators of the model parameters based on two different formulations of the conditional maximum likelihood method. Our approach does not require assumptions on the distribution of unobserved heterogeneity, nor it requires the latter to be independent of the regressors in the model. We investigate the finite sample properties of the test through a set of Monte Carlo experiments. Our results show that the test performs well, with small size distortions and good power properties. We use a health economics example based on data from the Health and Retirement Study to illustrate the proposed test.  相似文献   

15.
When some of the regressors in a panel data model are correlated with the random individual effects, the random effect (RE) estimator becomes inconsistent while the fixed effect (FE) estimator is consistent. Depending on the various degree of such correlation, we can combine the RE estimator and FE estimator to form a combined estimator which can be better than each of the FE and RE estimators. In this paper, we are interested in whether the combined estimator may be used to form a combined forecast to improve upon the RE forecast (forecast made using the RE estimator) and the FE forecast (forecast using the FE estimator) in out-of-sample forecasting. Our simulation experiment shows that the combined forecast does dominate the FE forecast for all degrees of endogeneity in terms of mean squared forecast errors (MSFE), demonstrating that the theoretical results of the risk dominance for the in-sample estimation carry over to the out-of-sample forecasting. It also shows that the combined forecast can reduce MSFE relative to the RE forecast for moderate to large degrees of endogeneity and for large degrees of heterogeneity in individual effects.  相似文献   

16.
In this paper, I consider generalized least squares (GLS) estimation in fixed effects panel and multilevel models with autocorrelation. The presence of fixed effects complicates implementation of GLS as estimating the fixed effects will typically render standard estimators of the covariance parameters necessary for obtaining feasible GLS estimates inconsistent. I focus on the case where the disturbances follow an AR(p) process and offer a simple to implement bias-correction for the AR coefficients. The usefulness of GLS and the derived bias-correction for the parameters of the autoregressive process is illustrated through a simulation study which uses data from the Current Population Survey.  相似文献   

17.
18.
19.
Yu et al. (2008) establish asymptotic properties of quasi-maximum likelihood estimators for a stable spatial dynamic panel model with fixed effects when both the number of individuals n and the number of time periods T are large. This paper investigates unstable cases where there are unit roots generated by temporal and spatial correlations. We focus on the spatial cointegration model where some eigenvalues of the data generating process are equal to 1 and the outcomes of spatial units are cointegrated as in a vector autoregressive system. The asymptotics of the QML estimators are developed by reparameterization, and bias correction for the estimators is proposed. We also consider the 2SLS and GMM estimations when T could be small.  相似文献   

20.
To verify whether data are missing at random (MAR) we need to observe the missing data. There are only two exceptions: when the relationship between the probability of responding and the missing variables is either imposed by introducing untestable assumptions or recovered using additional data sources. In this paper, we briefly review the estimation and test procedures for selectivity in panel data. Furthermore, by extending the MAR definition from a static setting to the case of dynamic panel data models, we prove that some tests for selectivity are not verifying the MAR condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号