首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Harvey, Leybourne and Taylor [Harvey, D.I., Leybourne, S.J., Taylor, A.M.R. 2009. Simple, robust and powerful tests of the breaking trend hypothesis. Econometric Theory 25, 995–1029] develop a test for the presence of a broken linear trend at an unknown point in the sample whose size is asymptotically robust as to whether the (unknown) order of integration of the data is either zero or one. This test is not size controlled, however, when this order assumes fractional values; its asymptotic size can be either zero or one in such cases. In this paper we suggest a new test, based on a sup-Wald statistic, which is asymptotically size-robust across fractional values of the order of integration (including zero or one). We examine the asymptotic power of the test under a local trend break alternative. The finite sample properties of the test are also investigated.  相似文献   

2.
This paper considers the problem of constructing confidence sets for the date of a single break in a linear time series regression. We establish analytically and by small sample simulation that the current standard method in econometrics for constructing such confidence intervals has a coverage rate far below nominal levels when breaks are of moderate magnitude. Given that breaks of moderate magnitude are a theoretically and empirically relevant phenomenon, we proceed to develop an appropriate alternative. We suggest constructing confidence sets by inverting a sequence of tests. Each of the tests maintains a specific break date under the null hypothesis, and rejects when a break occurs elsewhere. By inverting a certain variant of a locally best invariant test, we ensure that the asymptotic critical value does not depend on the maintained break date. A valid confidence set can hence be obtained by assessing which of the sequence of test statistics exceeds a single number.  相似文献   

3.
Perron [Perron, P., 1989. The great crash, the oil price shock and the unit root hypothesis. Econometrica 57, 1361–1401] introduced a variety of unit root tests that are valid when a break in the trend function of a time series is present. The motivation was to devise testing procedures that were invariant to the magnitude of the shift in level and/or slope. In particular, if a change is present it is allowed under both the null and alternative hypotheses. This analysis was carried under the assumption of a known break date. The subsequent literature aimed to devise testing procedures valid in the case of an unknown break date. However, in doing so, most of the literature and, in particular the commonly used test of Zivot and Andrews [Zivot, E., Andrews, D.W.K., 1992. Further evidence on the great crash, the oil price shock and the unit root hypothesis. Journal of Business and Economic Statistics 10, 251–270], assumed that if a break occurs, it does so only under the alternative hypothesis of stationarity. This is undesirable since (a) it imposes an asymmetric treatment when allowing for a break, so that the test may reject when the noise is integrated but the trend is changing; (b) if a break is present, this information is not exploited to improve the power of the test. In this paper, we propose a testing procedure that addresses both issues. It allows a break under both the null and alternative hypotheses and, when a break is present, the limit distribution of the test is the same as in the case of a known break date, thereby allowing increased power while maintaining the correct size. Simulation experiments confirm that our procedure offers an improvement over commonly used methods in small samples.  相似文献   

4.
Recent approaches to testing for a unit root when uncertainty exists over the presence and timing of a trend break employ break detection methods, so that a with-break unit root test is used only if a break is detected by some auxiliary statistic. While these methods achieve near asymptotic efficiency in both fixed trend break and no trend break environments, in finite samples pronounced “valleys” in the power functions of the tests (when mapped as functions of the break magnitude) are observed, with power initially high for very small breaks, then decreasing as the break magnitude increases, before increasing again. In response to this problem, we propose two practical solutions, based either on the use of a with-break unit root test but with adaptive critical values, or on a union of rejections principle taken across with-break and without-break unit root tests. These new procedures are shown to offer improved reliability in terms of finite sample power. We also develop local limiting distribution theory for both the extant and the newly proposed unit root statistics, treating the trend break magnitude as local-to-zero. We show that this framework allows the asymptotic analysis to closely approximate the finite sample power valley phenomenon, thereby providing useful analytical insights.  相似文献   

5.
In this paper, we consider tests for a break in the level of a series at an unknown point in time. It is often the case that uncertainty exists concerning the order of integration of the series; consequently, we focus on tests that are applicable when the order of integration is not known. The size and power of existing tests are analysed, and a modification to one of the established sets of tests is proposed which offers improved performance in certain circumstances.  相似文献   

6.
In this paper we provide a joint treatment of two major problems that surround testing for a unit root in practice: uncertainty as to whether or not a linear deterministic trend is present in the data, and uncertainty as to whether the initial condition of the process is (asymptotically) negligible or not. We suggest decision rules based on the union of rejections of four standard unit root tests (OLS and quasi-differenced demeaned and detrended ADF unit root tests), along with information regarding the magnitude of the trend and initial condition, to allow simultaneously for both trend and initial condition uncertainty.  相似文献   

7.
Tests of ARCH are a routine diagnostic in empirical econometric and financial analysis. However, it is well known that misspecification of the conditional mean may lead to spurious rejection of the null hypothesis of no ARCH. Nonlinearity is a prime example of this phenomenon. There is little work on the extent of the effect of neglected nonlinearity on the properties of ARCH tests. We investigate this using new ARCH testing procedures that are robust to the presence of neglected nonlinearity. Monte Carlo evidence shows that the problem is serious and that the new methods alleviate this problem to a very large extent. We apply the new tests to exchange rate data and find substantial evidence of spurious rejection of the null hypothesis of no ARCH.  相似文献   

8.
In this paper we develop a simple test procedure for a linear trend which does not require knowledge of the form of serial correlation in the data, is robust to strong serial correlation, and has a standard normal limiting null distribution under either I(0)I(0) or I(1)I(1) shocks. In contrast to other available robust linear trend tests, our proposed test achieves the Gaussian asymptotic local power envelope in both the I(0)I(0) and I(1)I(1) cases. For near-I(1)I(1) errors our proposed procedure is conservative and a modification for this situation is suggested. An estimator of the trend parameter, together with an associated confidence interval, which is asymptotically efficient, again regardless of whether the shocks are I(0)I(0) or I(1)I(1), is also provided.  相似文献   

9.
This paper proposes a computationally simple way to construct confidence sets for a parameter of interest in models comprised of moment inequalities. Building on results from the literature on multivariate one-sided tests, I show how to test the hypothesis that any particular parameter value is logically consistent with the maintained moment inequalities. The associated test statistic has an asymptotic chi-bar-square distribution, and can be inverted to construct an asymptotic confidence set for the parameter of interest, even if that parameter is only partially identified. Critical values for the test are easily computed, and a Monte Carlo study demonstrates implementation and finite sample performance.  相似文献   

10.
11.
We consider the impact of a break in the innovation volatility process on ratio‐based persistence change tests. We demonstrate that the ratio statistics used do not have pivotal limiting null distributions and that the associated tests display a considerable degree of size distortion with size approaching unity in some cases. In practice, therefore, on the basis of these tests the practitioner will face difficulty in discriminating between persistence change processes and processes which display a simple volatility break. A wild bootstrap‐based solution to the identified inference problem is proposed and is shown to work well in practice.  相似文献   

12.
This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered.  相似文献   

13.
In this paper we consider tests for the null of (trend-) stationarity against the alternative of a change in persistence at some (known or unknown) point in the observed sample, either from I(0)I(0) to I(1)I(1) behaviour or vice versa, of, inter alia, [Kim, J., 2000. Detection of change in persistence of a linear time series. Journal of Econometrics 95, 97–116]. We show that in circumstances where the innovation process displays non-stationary unconditional volatility of a very general form, which includes single and multiple volatility breaks as special cases, the ratio-based statistics used to test for persistence change do not have pivotal limiting null distributions. Numerical evidence suggests that this can cause severe over-sizing in the tests. In practice it may therefore be hard to discriminate between persistence change processes and processes with constant persistence but which display time-varying unconditional volatility. We solve the identified inference problem by proposing wild bootstrap-based implementations of the tests. Monte Carlo evidence suggests that the bootstrap tests perform well in finite samples. An empirical illustration using US price inflation data is provided.  相似文献   

14.
We provide an extensive evaluation of the predictive performance of the US yield curve for US gross domestic product growth by using new tests for forecast breakdown, in addition to a variety of in‐sample and out‐of‐sample evaluation procedures. Empirical research over the past decades has uncovered a strong predictive relationship between the yield curve and output growth, whose stability has recently been questioned. We document the existence of a forecast breakdown during the Burns–Miller and Volker monetary policy regimes, whereas during the early part of the Greenspan era the yield curve emerged as a more reliable model to predict future economic activity.  相似文献   

15.
Dickey and Fuller [Econometrica (1981) Vol. 49, pp. 1057–1072] suggested unit‐root tests for an autoregressive model with a linear trend conditional on an initial observation. TPower of tests for unit roots in the presence of a linear trendightly different model with a random initial value in which nuisance parameters can easily be eliminated by an invariant reduction of the model. We show that invariance arguments can also be used when comparing power within a conditional model. In the context of the conditional model, the Dickey–Fuller test is shown to be more stringent than a number of unit‐root tests motivated by models with random initial value. The power of the Dickey–Fuller test can be improved by making assumptions to the initial value. The practitioner therefore has to trade‐off robustness and power, as assumptions about initial values are hard to test, but can give more power.  相似文献   

16.
We introduce a framework which allows us to draw a clear parallel between the test for the presence of seasonal unit roots and that for unit root at frequency 0 (or ππ). It relies on the properties of the complex conjugate integrated of order one processes which are implicitly at work in the real time series. In the same framework as that of Phillips and Perron (Biometrica 75 (1988) 335), we derive tests for the presence of a pair of conjugate complex unit roots. The asymptotic distribution we obtain are formally close to those derived by these authors but expressed with complex Wiener processes. We then introduce sequences of near-integrated processes which allow us to study the local-to-unity asymptotic of the above test statistics. We state a result on the weak convergence of the partial sum of complex near-random walks which leads to complex Orstein–Uhlenbeck processes. Drawing on Elliott et al. (Econometrica 64 (1996) 813) we then study the design of point-optimal invariant test procedures and compute their envelope employing local-to-unity asymptotic approximations. This leads us to introduce new feasible and near efficient seasonal unit root tests. Their finite sample properties are investigated and compared with the different test procedures already available (J. Econometrics 44 (1991) 215; 62 (1994) 415; 85 (1998) 269) and those introduced in the first part of the paper.  相似文献   

17.
In this paper, we develop a set of new persistence change tests which are similar in spirit to those of Kim [Journal of Econometrics (2000) Vol. 95, pp. 97–116], Kim et al. [Journal of Econometrics (2002) Vol. 109, pp. 389–392] and Busetti and Taylor [Journal of Econometrics (2004) Vol. 123, pp. 33–66]. While the exisiting tests are based on ratios of sub‐sample Kwiatkowski et al. [Journal of Econometrics (1992) Vol. 54, pp. 158–179]‐type statistics, our proposed tests are based on the corresponding functions of sub‐sample implementations of the well‐known maximal recursive‐estimates and re‐scaled range fluctuation statistics. Our statistics are used to test the null hypothesis that a time series displays constant trend stationarity [I(0)] behaviour against the alternative of a change in persistence either from trend stationarity to difference stationarity [I(1)], or vice versa. Representations for the limiting null distributions of the new statistics are derived and both finite‐sample and asymptotic critical values are provided. The consistency of the tests against persistence change processes is also demonstrated. Numerical evidence suggests that our proposed tests provide a useful complement to the extant persistence change tests. An application of the tests to US inflation rate data is provided.  相似文献   

18.
An infinite-order asymptotic expansion is given for the autocovariance function of a general stationary long-memory process with memory parameter d∈(−1/2,1/2)d(1/2,1/2). The class of spectral densities considered includes as a special case the stationary and invertible ARFIMA(p,d,qp,d,q) model. The leading term of the expansion is of the order O(1/k1−2d)O(1/k12d), where kk is the autocovariance order, consistent with the well known power law decay for such processes, and is shown to be accurate to an error of O(1/k3−2d)O(1/k32d). The derivation uses Erdélyi’s [Erdélyi, A., 1956. Asymptotic Expansions. Dover Publications, Inc, New York] expansion for Fourier-type integrals when there are critical points at the boundaries of the range of integration - here the frequencies {0,2π}{0,2π}. Numerical evaluations show that the expansion is accurate even for small kk in cases where the autocovariance sequence decays monotonically, and in other cases for moderate to large kk. The approximations are easy to compute across a variety of parameter values and models.  相似文献   

19.
We show that the minimal forward (reverse) recursive unit tests of Banerjee, Lumsdaine and Stock [Journal of Business and Economics Statistics (1992) Vol. 10, pp. 271–288] are consistent against the alternative of a change in persistence from I(0) to I(1) [I(1) to I(0)]. However, these statistics are also shown to diverge for series which are I(0) throughout. Consequently, a rejection by these tests does not necessarily imply a change in persistence. We propose a further test, based on the ratio of these statistics, which is consistent against changes either from I(0) to I(1), or vice versa, yet does not over‐reject against constant I(0) series. Consistent breakpoint estimators are proposed.  相似文献   

20.
This paper derives the limiting distribution of the Lagrange Multiplier (LM) test for threshold nonlinearity in a TAR model with GARCH errors when one of the regimes contains a unit root. It is shown that the asymptotic distribution is nonstandard and depends on nuisance parameters that capture the degree of conditional heteroskedasticity and non-Gaussian nature of the process. We propose a bootstrap procedure for approximating the exact finite-sample distribution of the test for linearity and establish its asymptotic validity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号