共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the properties of the well-known maximum likelihood estimator in the presence of stochastic volatility and market microstructure noise, by extending the classic asymptotic results of quasi-maximum likelihood estimation. When trying to estimate the integrated volatility and the variance of noise, this parametric approach remains consistent, efficient and robust as a quasi-estimator under misspecified assumptions. Moreover, it shares the model-free feature with nonparametric alternatives, for instance realized kernels, while being advantageous over them in terms of finite sample performance. In light of quadratic representation, this estimator behaves like an iterative exponential realized kernel asymptotically. Comparisons with a variety of implementations of the Tukey–Hanning2 kernel are provided using Monte Carlo simulations, and an empirical study with the Euro/US Dollar future illustrates its application in practice. 相似文献
2.
It is commonly accepted that some financial data may exhibit long-range dependence, while other financial data exhibit intermediate-range dependence or short-range dependence. These behaviours may be fitted to a continuous-time fractional stochastic model. The estimation procedure proposed in this paper is based on a continuous-time version of the Gauss–Whittle objective function to find the parameter estimates that minimize the discrepancy between the spectral density and the data periodogram. As a special case, the proposed estimation procedure is applied to a class of fractional stochastic volatility models to estimate the drift, standard deviation and memory parameters of the volatility process under consideration. As an application, the volatility of the Dow Jones, S&P 500, CAC 40, DAX 30, FTSE 100 and NIKKEI 225 is estimated. 相似文献
3.
This paper is concerned with the discrete time stochastic volatility model Yi=exp(Xi/2)ηi, Xi+1=b(Xi)+σ(Xi)ξi+1, where only (Yi) is observed. The model is rewritten as a particular hidden model: Zi=Xi+εi, Xi+1=b(Xi)+σ(Xi)ξi+1, where (ξi) and (εi) are independent sequences of i.i.d. noise. Moreover, the sequences (Xi) and (εi) are independent and the distribution of ε is known. Then, our aim is to estimate the functions b and σ2 when only observations Z1,…,Zn are available. We propose to estimate bf and (b2+σ2)f and study the integrated mean square error of projection estimators of these functions on automatically selected projection spaces. By ratio strategy, estimators of b and σ2 are then deduced. The mean square risk of the resulting estimators are studied and their rates are discussed. Lastly, simulation experiments are provided: constants in the penalty functions defining the estimators are calibrated and the quality of the estimators is checked on several examples. 相似文献
4.
This paper explores the properties of jackknife methods of estimation in stationary autoregressive models. Some general results concerning the correct weights for bias reduction under various sampling schemes are provided and the asymptotic properties of a jackknife estimator based on non-overlapping sub-samples are derived for the case of a stationary autoregression of order p when the number of sub-samples is either fixed or increases with the sample size at an appropriate rate. The results of a detailed investigation into the finite sample properties of various jackknife and alternative estimators are reported and it is found that the jackknife can deliver substantial reductions in bias in autoregressive models. This finding is robust to departures from normality, ARCH effects and misspecification. The median-unbiasedness and mean squared error properties are also investigated and compared with alternative methods as are the coverage rates of jackknife-based confidence intervals. 相似文献
5.
We define a new procedure for consistent estimation of nonparametric simultaneous equations models under the conditional mean independence restriction of Newey et al. [1999. Nonparametric estimation of triangular simultaneous equation models. Econometrica 67, 565–603]. It is based upon local polynomial regression and marginal integration techniques. We establish the asymptotic distribution of our estimator under weak data dependence conditions. Simulation evidence suggests that our estimator may significantly outperform the estimators of Pinkse [2000. Nonparametric two-step regression estimation when regressors and errors are dependent. Canadian Journal of Statistics 28, 289–300] and Newey and Powell [2003. Instrumental variable estimation of nonparametric models. Econometrica 71, 1565–1578]. 相似文献
6.
Dennis Kristensen 《Journal of econometrics》2011,164(2):382-403
Novel transition-based misspecification tests of semiparametric and fully parametric univariate diffusion models based on the estimators developed in [Kristensen, D., 2010. Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models. Journal of Econometrics 156, 239-259] are proposed. It is demonstrated that transition-based tests in general lack power in detecting certain departures from the null since they integrate out local features of the drift and volatility. As a solution to this, tests that directly compare drift and volatility estimators under the relevant null and alternative are also developed which exhibit better power against local alternatives. 相似文献
7.
Modelling volatility by variance decomposition 总被引:1,自引:0,他引:1
In this paper, we propose two parametric alternatives to the standard GJR-GARCH model of Glosten et al. (1993), based on additive and multiplicative decompositions of the variance. They allow the variance of the model to have a smooth time-varying structure. The suggested parameterizations describe structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decomposition of the variance into an unconditional and conditional components. Estimation of the multiplicative model is discussed in detail. An empirical application to daily stock returns illustrates the functioning of the model. The results show that the ‘long memory type behaviour’ of the sample autocorrelation functions of the absolute returns can also be explained by deterministic changes in the unconditional variance. 相似文献
8.
We propose a multivariate generalization of the multiplicative volatility model of Engle and Rangel (2008), which has a nonparametric long run component and a unit multivariate GARCH short run dynamic component. We suggest various kernel-based estimation procedures for the parametric and nonparametric components, and derive the asymptotic properties thereof. For the parametric part of the model, we obtain the semiparametric efficiency bound. Our method is applied to a bivariate stock index series. We find that the univariate model of Engle and Rangel (2008) appears to be violated in the data whereas our multivariate model is more consistent with the data. 相似文献
9.
We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small (“zero”) returns. We stress the benefits of local volatility measures using short return blocks, as this greatly alleviates the downward biases stemming from rapid fluctuations in volatility, including diurnal (intraday) U-shape patterns. An empirical investigation of the Dow Jones 30 stocks and extensive simulations corroborate the robustness and efficiency properties of our nearest neighbor truncation estimators. 相似文献
10.
Long-run variance estimation can typically be viewed as the problem of estimating the scale of a limiting continuous time Gaussian process on the unit interval. A natural benchmark model is given by a sample that consists of equally spaced observations of this limiting process. The paper analyzes the asymptotic robustness of long-run variance estimators to contaminations of this benchmark model. It is shown that any equivariant long-run variance estimator that is consistent in the benchmark model is highly fragile: there always exists a sequence of contaminated models with the same limiting behavior as the benchmark model for which the estimator converges in probability to an arbitrary positive value. A class of robust inconsistent long-run variance estimators is derived that optimally trades off asymptotic variance in the benchmark model against the largest asymptotic bias in a specific set of contaminated models. 相似文献
11.
This paper shows that the asymptotic normal approximation is often insufficiently accurate for volatility estimators based on high frequency data. To remedy this, we derive Edgeworth expansions for such estimators. The expansions are developed in the framework of small-noise asymptotics. The results have application to Cornish–Fisher inversion and help setting intervals more accurately than those relying on normal distribution. 相似文献
12.
13.
In this paper we consider the problem of semiparametric efficient estimation in conditional quantile models with time series data. We construct an M-estimator which achieves the semiparametric efficiency bound recently derived by Komunjer and Vuong (forthcoming). Our efficient M-estimator is obtained by minimizing an objective function which depends on a nonparametric estimator of the conditional distribution of the variable of interest rather than its density. The estimator is new and not yet seen in the literature. We illustrate its performance through a Monte Carlo experiment. 相似文献
14.
We consider semiparametric frequency domain analysis of cointegration between long memory processes, i.e. fractional cointegration, allowing derivation of useful long-run relations even among stationary processes. The approach is due to Robinson (1994b. Annals of Statistics 22, 515–539) and uses a degenerating part of the periodogram near the origin to form a narrow-band frequency domain least squares (FDLS) estimator of the cointegrating relation, which is consistent for arbitrary short-run dynamics. We derive the asymptotic distribution theory for the FDLS estimator of the cointegration vector in the stationary long memory case, thus complementing Robinson's consistency result. An application to the relation between the volatility realized in the stock market and the associated implicit volatility derived from option prices is offered. 相似文献
15.
This paper proposes an estimation method for a partial parametric model with multiple integrated time series. Our estimation procedure is based on the decomposition of the nonparametric part of the regression function into homogeneous and integrable components. It consists of two steps: In the first step we parameterize and fit the homogeneous component of the nonparametric part by the nonlinear least squares with other parametric terms in the model, and use in the second step the standard kernel method to nonparametrically estimate the integrable component of the nonparametric part from the residuals in the first step. We establish consistency and obtain the asymptotic distribution of our estimator. A simulation shows that our estimator performs well in finite samples. For the empirical illustration, we estimate the money demand functions for the US and Japan using our model and methodology. 相似文献
16.
There is compelling evidence that many macroeconomic and financial variables are not generated by linear models. This evidence is based on testing linearity against either smooth nonlinearity or piece-wise linearity, but there is no framework that encompasses both. This paper provides an econometric framework that allows for both breaks and smooth nonlinearity in between breaks. We estimate the unknown break-dates simultaneously with other parameters via nonlinear least-squares. Using new central limit results for nonlinear processes, we provide inference methods on break-dates and parameter estimates and several instability tests. We illustrate our methods via simulated and empirical smooth transition models with breaks. 相似文献
17.
There are many environments where knowledge of a structural relationship is required to answer questions of interest. Also, nonseparability of a structural disturbance is a key feature of many models. Here, we consider nonparametric identification and estimation of a model that is monotonic in a nonseparable scalar disturbance, which disturbance is independent of instruments. This model leads to conditional quantile restrictions. We give local identification conditions for the structural equations from those quantile restrictions. We find that a modified completeness condition is sufficient for local identification. We also consider estimation via a nonparametric minimum distance estimator. The estimator minimizes the sum of squares of predicted values from a nonparametric regression of the quantile residual on the instruments. We show consistency of this estimator. 相似文献
18.
Stable autoregressive models are considered with martingale differences errors scaled by an unknown nonparametric time-varying function generating heterogeneity. An important special case involves structural change in the error variance, but in most practical cases the pattern of variance change over time is unknown and may involve shifts at unknown discrete points in time, continuous evolution or combinations of the two. This paper develops kernel-based estimators of the residual variances and associated adaptive least squares (ALS) estimators of the autoregressive coefficients. Simulations show that efficiency gains are achieved by the adaptive procedure. 相似文献
19.
In this paper we derive a semiparametric efficient adaptive estimator of an asymmetric GARCH model. Applying some general results from Drost et al. [1997. The Annals of Statistics 25, 786–818], we first estimate the unknown density function of the disturbances by kernel methods, then apply a one-step Newton–Raphson method to obtain a more efficient estimator than the quasi-maximum likelihood estimator. The proposed semiparametric estimator is adaptive for parameters appearing in the conditional standard deviation model with respect to the unknown distribution of the disturbances. 相似文献
20.
In this paper, we analytically investigate three efficient estimators for cointegrating regression models: Phillips and Hansen’s [Phillips, P.C.B., Hansen, B.E., 1990. Statistical inference in instrumental variables regression with I(1) processes. Review of Economic Studies 57, 99–125] fully modified OLS estimator, Park’s [Park, J.Y., 1992. Canonical cointegrating regressions. Econometrica 60, 119–143] canonical cointegrating regression estimator, and Saikkonen’s [Saikkonen, P., 1991. Asymptotically efficient estimation of cointegration regressions. Econometric Theory 7, 1–21] dynamic OLS estimator. We consider the case where the regression errors are moderately serially correlated and the AR coefficient in the regression errors approaches 1 at a rate slower than 1/T, where T represents the sample size. We derive the limiting distributions of the efficient estimators under this system and find that they depend on the approaching rate of the AR coefficient. If the rate is slow enough, efficiency is established for the three estimators; however, if the approaching rate is relatively faster, the estimators will have the same limiting distribution as the OLS estimator. For the intermediate case, the second-order bias of the OLS estimator is partially eliminated by the efficient methods. This result explains why, in finite samples, the effect of the efficient methods diminishes as the serial correlation in the regression errors becomes stronger. We also propose to modify the existing efficient estimators in order to eliminate the second-order bias, which possibly remains in the efficient estimators. Using Monte Carlo simulations, we demonstrate that our modification is effective when the regression errors are moderately serially correlated and the simultaneous correlation is relatively strong. 相似文献