首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Banking crises are rare events, but when they occur, their consequences are often dramatic. The aim of this paper is to contribute to the toolkit of early warning models that is available to policy makers by exploring the dynamics and exuberances embedded in a panel dataset that covers 22 European countries over four decades (from 1970Q1 to 2012Q4). The in- and out-of-sample forecast performances of several (dynamic) probit models are evaluated, with the objective of developing common vulnerability indicators with early warning properties. The results obtained show that adding dynamic components and exuberance indicators to the models improves the performances of early warning models significantly.  相似文献   

2.
This article explores the role of credit-based variables as early warning indicators (EWIs) of banking crises in the context of emerging economies. We collect data on bank and total credit to the private sector in emerging markets and evaluate the signalling performance by using the area under the receiver operating characteristics (ROC) curve (AUC). Our results show that nominal credit growth and the change in the credit-to-GDP ratio have the best signalling properties and significantly outperform the credit-to-GDP gap in almost all specifications for policy-relevant horizons. These findings are in stark contrast with the results on advanced economies, where the credit-to-GDP gap is the single best performing EWI. Our results emphasize the importance of caution when applying statistical methods calibrated for advanced markets to emerging economies.  相似文献   

3.
    
We assess the importance of residential investment for the prediction of economic recessions for an unbalanced panel of 12 OECD countries over the period 1960Q1–2014Q4. Our approach is to estimate various probit models with different leading indicators and evaluate their relative prediction accuracies using the area under the receiver operating characteristic curve as our forecasting performance metric. We document that residential investment contains information that is useful for predicting recessions both in-sample and out-of-sample. This result is robust to adding typical leading indicators, such as the term spread, stock prices, consumer confidence surveys and oil prices. It is shown that residential investment is particularly useful for the prediction of recessions for countries with high home-ownership rates. Finally, in a separate exercise for the US, we show that the predictive ability of residential investment is — in a broad sense — robust to employing real-time data.  相似文献   

4.
建筑产品价格探讨   总被引:1,自引:0,他引:1  
尚梅  周明 《基建优化》2004,25(2):24-26
建筑产品价格的变动趋势影响业主、承包商、金融机构及其他相关利益团体的投资决策,随着我国加入WTO及建筑业与世界接轨,计划经济时期以行政命令方式决定建筑产品价格、计划经济向市场经济转变时期依据统一定额和费率决定建筑产品价格的模式已不适应市场经济的发展了,西方市场经济国家成熟的无底招标模式在我国的应用也正在探索之中。为了正确理解建筑产品价格并进一步为建筑产品价格的预测奠定一定的基础,结合我国建筑业的实际,探讨建筑产品价格的特点、不同经济时期建筑产品价格形成的模式以及建筑产品价格运动的规律,并初步探讨了可能影响建筑产品价格的宏观经济变量。  相似文献   

5.
    
In a low-dimensional linear regression setup, considering linear transformations/combinations of predictors does not alter predictions. However, when the forecasting technology either uses shrinkage or is nonlinear, it does. This is precisely the fabric of the machine learning (ML) macroeconomic forecasting environment. Pre-processing of the data translates to an alteration of the regularization – explicit or implicit – embedded in ML algorithms. We review old transformations and propose new ones, then empirically evaluate their merits in a substantial pseudo-out-sample exercise. It is found that traditional factors should almost always be included as predictors and moving average rotations of the data can provide important gains for various forecasting targets. Also, we note that while predicting directly the average growth rate is equivalent to averaging separate horizon forecasts when using OLS-based techniques, the latter can substantially improve on the former when regularization and/or nonparametric nonlinearities are involved.  相似文献   

6.
    
This research compares the performance of three liquidity indicators, namely liquidity ratio (LiqR), liquidity creation (LiqC) and net stable funding difference (NSFD), for sending early warning signals for distressed banks. Recent evidence has shown that LiqR appears incapable of measuring the liquidity condition of banks. However, LiqC and NSFD have not yet been fully examined. Thus, which indicator is more useful in an early warning model becomes an interesting issue. We classify distressed banks as banks that have experienced a bank run, bailout, or failure. Sample data are collected from the United States and the European Union from before and after the financial crisis. We then estimate model predictive value using the sample before the crisis to predict liquidity shortages. Evidence shows that the academic (LiqC) and officially recommended indicators (NSFD) outperform LiqR as early warning signals. Furthermore, LiqC performs best when banks actively engage in income diversification but not fund diversification. Therefore, a well income-diversified bank with high LiqC tends to have high distress probability in the next period.  相似文献   

7.
8.
    
Budgeting and planning processes require medium-term sales forecasts with marketing scenarios. The complexity in modern retailing necessitates consistent, automatic forecasting and insight generation. Remedies to the high dimensionality problem have drawbacks; black box machine learning methods require voluminous data and lack insights, while regularization may bias causal estimates in interpretable models.The proposed FAIR (Fully Automatic Interpretable Retail forecasting) method supports the retail planning process with multi-step-ahead category-store level forecasts, scenario evaluations, and insights. It considers category-store specific seasonality, focal- and cross-category marketing, and adaptive base sales while dealing with regularization-induced confounding.We show, with three chains from the IRI dataset involving 30 categories, that regularization-induced confounding decreases forecast accuracy. By including focal- and cross-category marketing, as well as random disturbances, forecast accuracy is increased. FAIR is more accurate than the black box machine learning method Boosted Trees and other benchmarks while also providing insights that are in line with the marketing literature.  相似文献   

9.
This paper presents a forecasting model of bank failures based on machine-learning. The proposed methodology defines a linear decision boundary that separates the solvent banks from those that failed. This setup generates a novel alternative stress-testing tool. Our sample of 1443 U.S. banks includes all 481 banks that failed during the period 2007–2013. The set of explanatory variables is selected using a two-step feature selection procedure. The selected variables were then fed to a support vector machines forecasting model, through a training–testing learning process. The model exhibits a 99.22% overall forecasting accuracy and outperforms the well-established Ohlson’s score.  相似文献   

10.
The M5 forecasting competition has provided strong empirical evidence that machine learning methods can outperform statistical methods: in essence, complex methods can be more accurate than simple ones. Regardless, this result challenges the flagship empirical result that led the forecasting discipline for the last four decades: keep methods sophisticatedly simple. Nevertheless, this was a first, and we can argue that this will not happen again. There has been a different winner in each forecasting competition. This inevitably raises the question: can a method win more than once (and should it be expected to)? Furthermore, we argue for the need to elaborate on the perks of competing methods, and what makes them winners?  相似文献   

11.
    
This article considers nine different predictive techniques, including state-of-the-art machine learning methods for forecasting corporate bond yield spreads with other input variables. We examine each method’s out-of-sample forecasting performance using two different forecast horizons: (1) the in-sample dataset over 2003–2007 is used for one-year-ahead and two-year-ahead forecasts of non-callable corporate bond yield spreads; and (2) the in-sample dataset over 2003–2008 is considered to forecast the yield spreads in 2009. Evaluations of forecasting accuracy have shown that neural network forecasts are superior to the other methods considered here in both the short and longer horizon. Furthermore, we visualize the determinants of yield spreads and find that a firm’s equity volatility is a critical factor in yield spreads.  相似文献   

12.
    
This study uses innovative tools recently proposed in the statistical learning literature to assess the capability of standard exchange rate models to predict the exchange rate in the short and long runs. Our results show that statistical learning methods deliver remarkably good performance, outperforming the random walk in forecasting the exchange rate at different forecasting horizons, with the exception of the very short term (a period of one to two months). These results were robust across countries, time, and models. We then used these tools to compare the predictive capabilities of different exchange rate models and model specifications, and found that sticky price versions of the monetary model with an error correction specification delivered the best performance. We also explain the operation of the statistical learning models by developing measures of variable importance and analyzing the kind of relationship that links each variable with the outcome. This gives us a better understanding of the relationship between the exchange rate and economic fundamentals, which appears complex and characterized by strong non-linearities.  相似文献   

13.
    
《Economic Systems》2015,39(4):553-576
This work develops an early warning framework for assessing systemic risks and predicting systemic events over a short horizon of six quarters and a long horizon of 12 quarters on a panel of 14 countries, both advanced and developing. First, we build a financial stress index to identify the starting dates of systemic financial crises for each country in the panel. Second, early warning indicators for the assessment and prediction of systemic risk are selected in a two-step approach; we find relevant prediction horizons for each indicator by a univariate logit model followed by the application of Bayesian model averaging to identify the most useful indicators. Finally, we observe the performance of the constructed EWS over both horizons on the Czech data and find that the model over the long horizon outperforms the EWS over the short horizon. For both horizons, out-of-sample probability estimates do not deviate substantially from their in-sample estimates, indicating a good out-of-sample performance for the Czech Republic.  相似文献   

14.
    
This commentary introduces a correlation analysis of the top-10 ranked forecasting methods that participated in the M4 forecasting competition. The “M” competitions attempt to promote and advance research in the field of forecasting by inviting both industry and academia to submit forecasting algorithms for evaluation over a large corpus of real-world datasets. After performing the initial analysis to derive the errors of each method, we proceed to investigate the pairwise correlations among them in order to understand the extent to which they produce errors in similar ways. Based on our results, we conclude that there is indeed a certain degree of correlation among the top-10 ranked methods, largely due to the fact that many of them consist of a combination of well-known, statistical and machine learning techniques. This fact has a strong impact on the results of the correlation analysis, and therefore leads to similar forecasting error patterns.  相似文献   

15.
Is it possible to predict malfeasance in public procurement? With the proliferation of e-procurement systems in the public sector, anti-corruption agencies and watchdog organizations have access to valuable sources of information with which to identify transactions that are likely to become troublesome and why. In this article, we discuss the promises and challenges of using machine learning models to predict inefficiency and corruption in public procurement. We illustrate this approach with a dataset with more than two million public procurement contracts in Colombia. We trained machine learning models to predict which of them will result in corruption investigations, a breach of contract, or implementation inefficiencies. We then discuss how our models can help practitioners better understand the drivers of corruption and inefficiency in public procurement. Our approach will be useful to governments interested in exploiting large administrative datasets to improve the provision of public goods, and it highlights some of the tradeoffs and challenges that they might face throughout this process.  相似文献   

16.
Solar energy is one of the fastest growing sources of electricity generation. Forecasting solar stock prices is important for investors and venture capitalists interested in the renewable energy sector. This paper uses tree-based machine learning methods to forecast the direction of solar stock prices. The feature set used in prediction includes a selection of well-known technical indicators, silver prices, silver price volatility, and oil price volatility. The solar stock price direction prediction accuracy of random forests, bagging, support vector machines, and extremely randomized trees is much higher than that of logit. For a forecast horizon of between 8 and 20 days, random forests, bagging, support vector machines, and extremely randomized trees achieve a prediction accuracy greater than 85%. Although not as prominent as technical indicators like MA200, WAD, and MA20, oil price volatility and silver price volatility are also important predictors. An investment portfolio trading strategy based on trading signals generated from the extremely randomized trees stock price direction prediction outperforms a simple buy and hold strategy. These results demonstrate the accuracy of using tree-based machine learning methods to forecast the direction of solar stock prices and adds to the broader literature on using machine learning techniques to forecast stock prices.  相似文献   

17.
    
Forecasting customer flow is key for retailers in making daily operational decisions, but small retailers often lack the resources to obtain such forecasts. Rather than forecasting stores’ total customer flows, this research utilizes emerging third-party mobile payment data to provide participating stores with a value-added service by forecasting their share of daily customer flows. These customer transactions using mobile payments can then be utilized further to derive retailers’ total customer flows indirectly, thereby overcoming the constraints that small retailers face. We propose a third-party mobile-payment-platform centered daily mobile payments forecasting solution based on an extension of the newly-developed Gradient Boosting Regression Tree (GBRT) method which can generate multi-step forecasts for many stores concurrently. Using empirical forecasting experiments with thousands of time series, we show that GBRT, together with a strategy for multi-period-ahead forecasting, provides more accurate forecasts than established benchmarks. Pooling data from the platform across stores leads to benefits relative to analyzing the data individually, thus demonstrating the value of this machine learning application.  相似文献   

18.
Can machine-learning algorithms help central banks understand the current state of the economy? Our results say yes! We contribute to the emerging literature on forecasting macroeconomic variables using machine-learning algorithms by testing the nowcast performance of common algorithms in a full ‘real-time’ setting—that is, with real-time vintages of New Zealand GDP growth (our target variable) and real-time vintages of around 600 predictors. Our results show that machine-learning algorithms are able to significantly improve over a simple autoregressive benchmark and a dynamic factor model. We also show that machine-learning algorithms have the potential to add value to, and in one case improve on, the official forecasts of the Reserve Bank of New Zealand.  相似文献   

19.
This article presents the first ever ranking of professional forecasters based on the predictive power of the narrative of their regular research reports. The ranking is generated by applying the fully automated four-step procedure – called NLP-ForRank – developed in this article. The four steps are data scraping from the internet; data preparation; application of the natural language processing (NLP) models; and evaluation of the predictive power of the NLP indexes with linear regression, Granger causality, vector autoregression (VAR), and random forest forecasting models. Applying this procedure to five large Polish banks and to many time series shows that including the constructed NLP indexes in the forecasting models lowers the forecast errors, and that the optimal model almost always contains the NLP index. The financial news agencies could consider publishing this type of ranking on a regular basis as it would foster accountability, transparency, and a more competitive environment in the professional forecasting industry.  相似文献   

20.
    
Stock markets can be interpreted to a certain extent as prediction markets, since they can incorporate and represent the different opinions of investors who disagree on the implications of the available information on past and expected events and trade on their beliefs in order to achieve profits. Many forecast models have been developed for predicting the future state of stock markets, with the aim of using this knowledge in a trading strategy. This paper interprets the classification of the S&P500 open-to-close returns as a four-class problem. We compare four trading strategies based on a random forest classifier to a buy-and-hold strategy. The results show that predicting the classes with higher absolute returns, ‘strong positive’ and ‘strong negative’, contributed the most to the trading strategies on average. This finding can help shed light on the way in which using additional event outcomes for the classification beyond a simple upward or downward movement can potentially improve a trading strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号