首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the pricing of options written on the quadratic variation of a given stock price process. Using the Laplace transform approach, we determine semi‐explicit formulas in general affine models allowing for jumps, stochastic volatility, and the leverage effect. Moreover, we show that the joint dynamics of the underlying stock and a corresponding variance swap again are of affine form. Finally, we present a numerical example for the Barndorff‐Nielsen and Shephard model with leverage. In particular, we study the effect of approximating the quadratic variation with its predictable compensator.  相似文献   

2.
Variance swaps now trade actively over‐the‐counter (OTC) on both stocks and stock indices. Also trading OTC are variations on variance swaps which localize the payoff in time, in the underlying asset price, or both. Given that the price of the underlying asset evolves continuously over time, it is well known that there exists a semirobust hedge for these localized variance contracts. Remarkably, the hedge succeeds even though the stochastic process describing the instantaneous variance is never specified. In this paper, we present a generalization of these results to the case of two or more underlying assets.  相似文献   

3.
We consider the non‐Gaussian stochastic volatility model of Barndorff‐Nielsen and Shephard for the exponential mean‐reversion model of Schwartz proposed for commodity spot prices. We analyze the properties of the stochastic dynamics, and show in particular that the log‐spot prices possess a stationary distribution defined as a normal variance‐mixture model. Furthermore, the stochastic volatility model allows for explicit forward prices, which may produce a hump structure inherited from the mean‐reversion of the stochastic volatility. Although the spot price dynamics has continuous paths, the forward prices will have a jump dynamics, where jumps occur according to changes in the volatility process. We compare with the popular Heston stochastic volatility dynamics, and show that the Barndorff‐Nielsen and Shephard model provides a more flexible framework in describing commodity spot prices. An empirical example on UK spot data is included.  相似文献   

4.
Long memory in continuous-time stochastic volatility models   总被引:10,自引:0,他引:10  
This paper studies a classical extension of the Black and Scholes model for option pricing, often known as the Hull and White model. Our specification is that the volatility process is assumed not only to be stochastic, but also to have long-memory features and properties. We study here the implications of this continuous-time long-memory model, both for the volatility process itself as well as for the global asset price process. We also compare our model with some discrete time approximations. Then the issue of option pricing is addressed by looking at theoretical formulas and properties of the implicit volatilities as well as statistical inference tractability. Lastly, we provide a few simulation experiments to illustrate our results.  相似文献   

5.
This paper develops a novel class of hybrid credit‐equity models with state‐dependent jumps, local‐stochastic volatility, and default intensity based on time changes of Markov processes with killing. We model the defaultable stock price process as a time‐changed Markov diffusion process with state‐dependent local volatility and killing rate (default intensity). When the time change is a Lévy subordinator, the stock price process exhibits jumps with state‐dependent Lévy measure. When the time change is a time integral of an activity rate process, the stock price process has local‐stochastic volatility and default intensity. When the time change process is a Lévy subordinator in turn time changed with a time integral of an activity rate process, the stock price process has state‐dependent jumps, local‐stochastic volatility, and default intensity. We develop two analytical approaches to the pricing of credit and equity derivatives in this class of models. The two approaches are based on the Laplace transform inversion and the spectral expansion approach, respectively. If the resolvent (the Laplace transform of the transition semigroup) of the Markov process and the Laplace transform of the time change are both available in closed form, the expectation operator of the time‐changed process is expressed in closed form as a single integral in the complex plane. If the payoff is square integrable, the complex integral is further reduced to a spectral expansion. To illustrate our general framework, we time change the jump‐to‐default extended constant elasticity of variance model of Carr and Linetsky (2006) and obtain a rich class of analytically tractable models with jumps, local‐stochastic volatility, and default intensity. These models can be used to jointly price equity and credit derivatives.  相似文献   

6.
We consider an asset whose risk‐neutral dynamics are described by a general class of local‐stochastic volatility models and derive a family of asymptotic expansions for European‐style option prices and implied volatilities. We also establish rigorous error estimates for these quantities. Our implied volatility expansions are explicit; they do not require any special functions nor do they require numerical integration. To illustrate the accuracy and versatility of our method, we implement it under four different model dynamics: constant elasticity of variance local volatility, Heston stochastic volatility, three‐halves stochastic volatility, and SABR local‐stochastic volatility.  相似文献   

7.
Motivated by analytical valuation of timer options (an important innovation in realized variance‐based derivatives), we explore their novel mathematical connection with stochastic volatility and Bessel processes (with constant drift). Under the Heston (1993) stochastic volatility model, we formulate the problem through a first‐passage time problem on realized variance, and generalize the standard risk‐neutral valuation theory for fixed maturity options to a case involving random maturity. By time change and the general theory of Markov diffusions, we characterize the joint distribution of the first‐passage time of the realized variance and the corresponding variance using Bessel processes with drift. Thus, explicit formulas for a useful joint density related to Bessel processes are derived via Laplace transform inversion. Based on these theoretical findings, we obtain a Black–Scholes–Merton‐type formula for pricing timer options, and thus extend the analytical tractability of the Heston model. Several issues regarding the numerical implementation are briefly discussed.  相似文献   

8.
In this work, we introduce the notion of fully incomplete markets. We prove that for these markets, the super‐replication price coincides with the model‐free super‐replication price. Namely, the knowledge of the model does not reduce the super‐replication price. We provide two families of fully incomplete models: stochastic volatility models and rough volatility models. Moreover, we give several computational examples. Our approach is purely probabilistic.  相似文献   

9.
We consider a general local‐stochastic volatility model and an investor with exponential utility. For a European‐style contingent claim, whose payoff may depend on either a traded or nontraded asset, we derive an explicit approximation for both the buyer's and seller's indifference prices. For European calls on a traded asset, we translate indifference prices into an explicit approximation of the buyer's and seller's implied volatility surfaces. For European claims on a nontraded asset, we establish rigorous error bounds for the indifference price approximation. Finally, we implement our indifference price and implied volatility approximations in two examples.  相似文献   

10.
In this paper, we present a highly efficient approach to price variance swaps with discrete sampling times. We have found a closed‐form exact solution for the partial differential equation (PDE) system based on the Heston's two‐factor stochastic volatility model embedded in the framework proposed by Little and Pant. In comparison with the previous approximation models based on the assumption of continuous sampling time, the current research of working out a closed‐form exact solution for variance swaps with discrete sampling times at least serves for two major purposes: (i) to verify the degree of validity of using a continuous‐sampling‐time approximation for variance swaps of relatively short sampling period; (ii) to demonstrate that significant errors can result from still adopting such an assumption for a variance swap with small sampling frequencies or long tenor. Other key features of our new solution approach include the following: (1) with the newly found analytic solution, all the hedging ratios of a variance swap can also be analytically derived; (2) numerical values can be very efficiently computed from the newly found analytic formula.  相似文献   

11.
Most of the existing pricing models of variance derivative products assume continuous sampling of the realized variance processes, though actual contractual specifications compute the realized variance based on sampling at discrete times. We present a general analytic approach for pricing discretely sampled generalized variance swaps under the stochastic volatility models with simultaneous jumps in the asset price and variance processes. The resulting pricing formula of the gamma swap is in closed form while those of the corridor variance swaps and conditional variance swaps take the form of one‐dimensional Fourier integrals. We also verify through analytic calculations the convergence of the asymptotic limit of the pricing formulas of the discretely sampled generalized variance swaps under vanishing sampling interval to the analytic pricing formulas of the continuously sampled counterparts. The proposed methodology can be applied to any affine model and other higher moments swaps as well. We examine the exposure to convexity (volatility of variance) and skew (correlation between the equity returns and variance process) of these discretely sampled generalized variance swaps. We explore the impact on the fair strike prices of these exotic variance swaps with respect to different sets of parameter values, like varying sampling frequencies, jump intensity, and width of the monitoring corridor.  相似文献   

12.
Using tools from spectral analysis, singular and regular perturbation theory, we develop a systematic method for analytically computing the approximate price of a large class of derivative‐assets. The payoff of the derivative‐assets may be path‐dependent. In addition, the process underlying the derivatives may exhibit killing (i.e., jump to default) as well as combined local/nonlocal stochastic volatility. The nonlocal component of volatility may be multiscale, in the sense that it may be driven by one fast‐varying and one slow‐varying factor. The flexibility of our modeling framework is contrasted by the simplicity of our method. We reduce the derivative pricing problem to that of solving a single eigenvalue equation. Once the eigenvalue equation is solved, the approximate price of a derivative can be calculated formulaically. To illustrate our method, we calculate the approximate price of three derivative‐assets: a vanilla option on a defaultable stock, a path‐dependent option on a nondefaultable stock, and a bond in a short‐rate model.  相似文献   

13.
We propose a model which can be jointly calibrated to the corporate bond term structure and equity option volatility surface of the same company. Our purpose is to obtain explicit bond and equity option pricing formulas that can be calibrated to find a risk neutral model that matches a set of observed market prices. This risk neutral model can then be used to price more exotic, illiquid, or over‐the‐counter derivatives. We observe that our model matches the equity option implied volatility surface well since we properly account for the default risk in the implied volatility surface. We demonstrate the importance of accounting for the default risk and stochastic interest rate in equity option pricing by comparing our results to Fouque et al., which only accounts for stochastic volatility.  相似文献   

14.
15.
We introduce an explicitly solvable multiscale stochastic volatility model that generalizes the Heston model. The model describes the dynamics of an asset price and of its two stochastic variances using a system of three Ito stochastic differential equations. The two stochastic variances vary on two distinct time scales and can be regarded as auxiliary variables introduced to model the dynamics of the asset price. Under some assumptions, the transition probability density function of the stochastic process solution of the model is represented as a one‐dimensional integral of an explicitly known integrand. In this sense the model is explicitly solvable. We consider the risk‐neutral measure associated with the proposed multiscale stochastic volatility model and derive formulae to price European vanilla options (call and put) in the multiscale stochastic volatility model considered. We use the thus‐obtained option price formulae to study the calibration problem, that is to study the values of the model parameters, the correlation coefficients of the Wiener processes defining the model, and the initial stochastic variances implied by the “observed” option prices using both synthetic and real data. In the analysis of real data, we use the S&P 500 index and to the prices of the corresponding options in the year 2005. The web site http://www.econ.univpm.it/recchioni/finance/w7 contains some auxiliary material including some animations that helps the understanding of this article. A more general reference to the work of the authors and their coauthors in mathematical finance is the web site http://www.econ.univpm.it/recchioni/finance . © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 29:862–893, 2009  相似文献   

16.
In the stochastic volatility framework of Hull and White (1987), we characterize the so-called Black and Scholes implied volatility as a function of two arguments the ratio of the strike to the underlying asset price and the instantaneous value of the volatility By studying the variation m the first argument, we show that the usual hedging methods, through the Black and Scholes model, lead to an underhedged (resp. overhedged) position for in-the-money (resp out-of the-money) options, and a perfect partial hedged position for at the-money options These results are shown to be closely related to the smile effect, which is proved to be a natural consequence of the stochastic volatility feature the deterministic dependence of the implied volatility on the underlying volatility process suggests the use of implied volatility data for the estimation of the parameters of interest A statistical procedure of filtering (of the latent volatility process) and estimation (of its parameters) is shown to be strongly consistent and asymptotically normal.  相似文献   

17.
We study the Merton portfolio optimization problem in the presence of stochastic volatility using asymptotic approximations when the volatility process is characterized by its timescales of fluctuation. This approach is tractable because it treats the incomplete markets problem as a perturbation around the complete market constant volatility problem for the value function, which is well understood. When volatility is fast mean‐reverting, this is a singular perturbation problem for a nonlinear Hamilton–Jacobi–Bellman partial differential equation, while when volatility is slowly varying, it is a regular perturbation. These analyses can be combined for multifactor multiscale stochastic volatility models. The asymptotics shares remarkable similarities with the linear option pricing problem, which follows from some new properties of the Merton risk tolerance function. We give examples in the family of mixture of power utilities and also use our asymptotic analysis to suggest a “practical” strategy that does not require tracking the fast‐moving volatility. In this paper, we present formal derivations of asymptotic approximations, and we provide a convergence proof in the case of power utility and single‐factor stochastic volatility. We assess our approximation in a particular case where there is an explicit solution.  相似文献   

18.
Classical put–call symmetry relates the price of puts and calls under a suitable dual market transform. One well‐known application is the semistatic hedging of path‐dependent barrier options with European options. This, however, in its classical form requires the price process to observe rather stringent and unrealistic symmetry properties. In this paper, we develop a general self‐duality theorem to develop valuation schemes for barrier options in stochastic volatility models with correlation.  相似文献   

19.
In this article, we study the market of the Chicago Board Options Exchange S&P 500 three‐month variance futures that were listed on May 18, 2004. By using a simple mean‐reverting stochastic volatility model for the S&P 500 index, we present a linear relation between the price of fixed time‐to‐maturity variance futures and the VIX2. The model prediction is supported by empirical tests. We find that a model with a fixed mean‐reverting speed of 1.2929 and a daily‐calibrated floating long‐term mean level has a good fit to the market data between May 18, 2004, and August 17, 2007. The market price of volatility risk estimated from the 30‐day realized variance and VIX2 has a mean value of −19.1184. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:48–70, 2010  相似文献   

20.
We consider a modeling setup where the volatility index (VIX) dynamics are explicitly computable as a smooth transformation of a purely diffusive, multidimensional Markov process. The framework is general enough to embed many popular stochastic volatility models. We develop closed‐form expansions and sharp error bounds for VIX futures, options, and implied volatilities. In particular, we derive exact asymptotic results for VIX‐implied volatilities, and their sensitivities, in the joint limit of short time‐to‐maturity and small log‐moneyness. The expansions obtained are explicit based on elementary functions and they neatly uncover how the VIX skew depends on the specific choice of the volatility and the vol‐of‐vol processes. Our results are based on perturbation techniques applied to the infinitesimal generator of the underlying process. This methodology has previously been adopted to derive approximations of equity (SPX) options. However, the generalizations needed to cover the case of VIX options are by no means straightforward as the dynamics of the underlying VIX futures are not explicitly known. To illustrate the accuracy of our technique, we provide numerical implementations for a selection of model specifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号