首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article the impact of technology education, as a new learning area (subject) in the curriculum, on in-service teacher education in South Africa is described in order to ascertain the extent of the impact. The research on which this article is based draws on a variety of experiences and observations in the field at grassroots level (in particular an outreach project in rural communities). The envisaged impact of technology education on South African schools, communities, teacher educators and teachers, the range of in-service teacher education that is required, and the impacts in urban and rural areas are discussed. Finally a number of concluding remarks are made about the extent of the impact of the inclusion of technology education in the new National Curriculum Statement and whether the situation has changed since the implementation of a pilot technology education project in 1998. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3.
This paper points out that technology education has historically had many principles and practices which reflect an underlying philosophy, but that the philosophy has not been made explicit by many technology education practitioners. As philosophy helps technology educators understand alternatives, make decisions and take action in both curriculum and instruction, it is important for technology educators to ask philosophical questions at the onset of their work to understand the implications of their actions. A brief discussion about some of the philosophies that inform educational practice in North America provides a background for an analysis of the different philosophies in relation to technology education, and provides insight into the significance of reconstructionism, an outgrowth of pragmatism, as a philosophy in which to frame and describe technology education. This is illustrated through several examples of a reconstructionistic approach to technology education.  相似文献   

4.
At the beginning of this new century, design and technology educators face a serious dilemma: Practice conventional modes of design and technology, which have consumed proponents in Canada, England, Germany, and the US, or model design for sustainable lifestyles. Our conventional design, problem solving and technological methods embody a liberal, political ecology and in effect, these methods – our practices – are not sustainable. Using the political ecology of Nike shoes as an example, I describe ecological footprints, resource streams, and wakes as effective metaphors for sustainable practice. In contra-distinction to technocentric methods, I argue for modelling ecocentric processes rooted in political ecology and cultural studies. Attending to the political ecology of design and technology means nothing less than remodelling the design of lifestyles and reducing production and consumption in our practice.  相似文献   

5.
This paper investigates developments in the teaching of food technology introduced as an element of design & technology in the 1990 National Curriculum for Technology in the English primary curriculum for children aged five to eleven years. It reviews briefly the situation for food teaching before 1990 and identifies a number of relevant issues. This is followed by an overview of developments in food technology in primary schools between 1992 and 2001, highlighting the need for primary teachers and trainee teachers on initial teacher education courses to develop an understanding of how to teach food technology in their schools. The development of teaching materials through the Nuffield Approach to food technology in primary schools is outlined together with a case study of the use of the materials in initial teacher education at the University of Surrey Roehampton. The paper describes the uptake of Nuffield Primary food technology materials as measured by down loads from the Nuffield Primary Design & Technology web site. Alongside this, there are reflections of primary trainee teachers on the impact of using the Nuffield food technology materials on their classroom practice during school experience. It concludes with a discussion of the key issues arising from the paper and suggestions for future research. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Technology is frequently considered in terms of its impact on entities outside its essential nature: as the impact of technology on the environment and society, but also the impact of human values and needs on technology. By taking particular social implications of technology into account, the Science–Technology relationship can be extended to the field of Science, Technology and Society (STS) studies. STS studies are grounded in socio-technological understanding, that is, systematic knowledge of the mutual relationship between technical objects, the natural environment and social practice. Because technology is a key element of STS, it is expected that the philosophy of technology will have implications for STS studies. The dynamic nature of technology as such leaves its own philosophy in a tentative or flexible state. However, the implications of the philosophy of technology, being in a development phase at the moment with changes in emphasis occuring, for STS studies ought to be determined continuously. The aim of the article is to identify and discuss possible implications of the the philosophy of technology for STS. In order to deduce these implications, the relevant theoretical framework underpinning the article will be discussed in broad outlines. Seeing that the philosophy of technology is such a wide field a delineation of the field needs to be done. Mitcham’s proposed preliminary framework is taken as point of departure for the article. Technology as knowledge (epistemology/theory of knowledge) and technology as activity (design methodology) will be discussed as two key aspects of the modern philosophy of technology which could provide implications for STS. A theory of knowledge usually includes methodology, but seeing that Mitcham classified methodology as one of the modes in which technology is manifested, it is dealt with separately. The epistemology and methodology of technology will each be discussed from a philosophical, historical and practice-based methodological perspective. Some implications of the philosophy for STS are identified and discussed.  相似文献   

7.
This article, in seven sections, describes the evolution of technological education in the Canadian province of Ontario. The first section clarifies the meanings of the terms technology and technological education. The second outlines significant events in the history of technical education in the province. The third examines some of the societal factors that have created a climate for change during the past two decades, while the fourth describes the broader context of recent curriculum developments. The fifth reports on the introduction in 1995 of The Common Curriculum and the publication of Broad-based Technological Education. The sixth provides a few case studies illustrating the variety of ways in which technology education is currently implemented. The seventh section offers an evaluation and critique of some aspects of provincial curriculum policy and practice. The article is published in two parts. Part 1, in this issue, contains the first five sections, which describe the current curriculum offerings and their evolution. Part 2, containing the remaining two sections and all references, will be published in the next issue. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
This paper reports on the needs identified by three teachers during an investigation into their first experiences of implementing technology in their primary classrooms. One part of one teacher's case is presented in detail to illustrate that the meanings the teachers made of their experiences were related very closely to their beliefs about teaching and learning, to their understanding of technology as a phenomenon and to the place they saw technology having within the whole curriculum. One particular outcome of the investigation was that the teachers experienced a lack of knowledge of the scope and breadth of the technology learning area, and as a consequence, faced challenges in planning for the successful implementation of activities. In response to this particular need and to the many issues emanating from current research literature in technology education, the paper then presents two models for conceptualizing and planning units of work in technology in primary classrooms. The models form frameworks that may be useful to help structure thinking for authentic classroom planning and sequencing of lessons or learning experiences. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
`The design process' as an underpinning structure for technology education is well established. A number of increasingly complex models have been produced to describe the design process. These models have had a widespread, paradigmatic effect on the teaching of technology education. The development and implementation of models of the design process and the influence of these on teacher's classroom practice is examined, and it is then argued that the paradigm is fatally flawed, and that continued adherence to it is having a detrimental impact on children's learning in technology. It is suggested that the basis of an alternative pedagogy for technology education already exists within the research literature. Two examples of an alternative approach for teaching technology are described, and some practical limitations outlined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
It appears that programme development in technology education is emerging from an atheoretical perspective. This could be attributed to the absence/neglect of conceptual frameworks (philosophical underpinning) in the development of programmes in technology education. This article explores the role of the content dimension of the 'essential features' of technology and technology education in OBE (Outcomes Based Education) related programme development. An instructional programme was developed using criteria derived from the essential features of technology and technology education. In order to gauge learners' experience, in relation to these essential features, a qualitative case study involving 20 learners was undertaken at a College of Education. Engagement with theprogramme proved to be an empowering experience for the learners who had hitherto not had the opportunity to experience a formal programme in technology education. Although it could not be proved conclusively that cognitive development had occurred, positive inter-dependence,shared responsibility, social skills and enhanced learning were evident. The study has shown that criteria derived from the 'essential features' of technology and technology education could serve as a reliable yardstick to measure the extent of learning in relation to these essential features  相似文献   

11.
This paper addresses two closely interrelated issues in Technology Education: knowledge and values. The starting point for the discussion is analysis of the nature of knowledge in technology education. Approaches for theorising knowledge will be analysed in this paper as well as problems associated with them. Three major types of problems are identified: problems with finding an appropriate approach for the analysis of technological knowledge; problems with a technocratic interpretation of technological knowledge for the purpose of its classification; and problems with establishing a consistent approach to distinguish common features of technological knowledge. A model that represents knowledge in technology education and the place of values in it is presented as a way of overcoming the problems specified. The claim is made that understanding of knowledge/values relationships can improve theoretical understanding of how technology education can be constructed.  相似文献   

12.
The article summarises the design and outcome of an inquiry into the promotion of interest in technology by technology education. The reason for the present study is the low proportion of women in technical occupations, studies or subjects. Such a marked gender difference leads to different ways of life which discriminate against women. It is necessary, therefore, to search for the underlying causes and to take measures in order to support technological activities. The aim of the German study was to determine differences in the interests of girls and boys in technology and to support interest more widely in technology by technology education. The study was conducted in a class in the third year of elementary education. At first, differences between girls and boys in the intensity and gearing of interest in technology were determined by a survey. After exposure of a `treatment Group' to technology education, the effects of such education were established by mean of a second survey. The results of the first and second survey were compared. The results show that the interests of girls and boys were aroused by technology education. Furthermore, gender differences are reduced significantly. The findings of this study suggest that it is essential to intensify technology education in elementary school because it is the earliest opportunity for curriculum intervention. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Rapid social change creates a powerful challenge to individuals and educational institutions. Technology education is not an exception. To be a useful and authentic learning area, technology education should constantly re-examine its rationale in order to formulate responses to changing contexts to improve the quality of learning for students. The more perspectives used for this process, the better the results should be. This article explores several facets of social change that can influence an understanding of the aims and nature of technology education and that might contribute to its development. Social change is a very complex and dynamic phenomenon that can be considered from a variety of perspectives and is reflected in a number of processes. These processes are different in different types of societies. In relation to the topic, the following processes that are relevant to Western societies (it is acknowledged that for different type of societies, e.g. Islamic, Chinese, social context will be different) will be analyzed: (1) The shift of emphasis from engaging society members primarily as producers to engaging society members primarily as consumers; (2) The colonisation of the cognitive and moral spheres of human life by the aesthetic sphere; (3) The integration of people into the technological world and (4) The shift from the Welfare state to the Competition state. These processes have been identified on the basis of their potential influences on the development of technology education and, as a consequence, the students who study it. These processes are in tension which creates even greater challenges to technology education. Several implications of the above analysis in terms of conceptualizing technology education are discussed. It is suggested that social change can be addressed through technology education if the educational goals of it are ‘to broaden minds and develop all pupils in the creation of a better society’. For technology education classrooms, these specifically mean the involvement of students in democratic debates on the future outlines of technological development; development of their social and ecological sensitivities; avoiding orienting their solutions exclusively to the standard of business efficiency and profitability criteria; helping them to distinguish real needs from desires; discussing the role of designed objects in the life of contemporary society; putting more emphasis on other than the aesthetic aspects of life that can provide existential meaning for people; challenging the way people are manipulated through advertising and cultivation of their desires; developing an active/creative attitude towards problems (not re-active); teaching students to formulate problems (not only being involved in problem solving); challenging consumer-oriented design; looking at design as one source of inspiration, not as a source of economic utility; and developing social responsibility  相似文献   

14.
In 1999 Technology in the New Zealand Curriculum became mandatory. It was developed over a period of approximately four years from conception to publication, with wide consultation. It was first published in October 1995. During the three years between publication and gazetting many teachers were involved in professional development. During this time it became obvious that there was confusion amongst teachers about the meaning of `authenticity' in relation to technology programmes. Do technological problems need to be authentic to the students themselves or to the nature of technological practice? Many learning theories have informed the development of this document. Those selected here indicate quite clearly the meaning and context of authenticity with regard to technology education. By involving our students in activity that is authentic to technological practice or real world technology, teachers are able to provide stimulating and relevant learning for students. This was also the indication in recent communication from the Ministry of Education in New Zealand during the 1999 Technology Education New Zealand (TENZ) conference. By giving academic value to technology and developing our teachers in the fields of technological practice we hope our students will influence the economic status of our country in the future.  相似文献   

15.
This article considers the problem of introducing technology education as a school subject in development countries. Should the subject draw inspiration from everyday circumstances in these countries, or should it leapfrog to the space age? Answers depend upon circumstance. Alternative scenarios for how technology can be introduced in these settings are set forth. They include technology as reconstituted industrial arts, and technology across the curriculum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
This paper examines some of the many problems and issues associated with integrating new and developing technologies into the education of future designers. As technology in general races ahead challenges arise for both commercial designers and educators on how best to keep track and utilise the advances. The challenge is particularly acute within tertiary education where the introduction of new cutting edge technology is often encouraged. Although this is generally achieved through the feedback of research activity, integrating new concepts at an appropriate level is a major task. Of particular concern is how focussed areas of applied technology can be made part of the multidisciplinary scope of design education.The paper describes the model used to introduce areas of Artificial Intelligence (AI) to undergraduate industrial design students. The successful interaction of research and education within a UK higher education establishment are discussed and project examples given. It is shown that, through selective tuition of research topics and appropriate technical support, innovative design solutions can result. In addition, it shows that by introducing leading edge and, in some cases, underdeveloped technology, specific key skills of independent learning, communication and research methods can be encouraged.  相似文献   

17.
This paper examines the rationale for the Woodworking Skills section of a course on Practical Craft Skills which forms part of the new technology curriculum in Scottish Schools. Introduced with the intention of making technology subjects more accessible to a wider range of pupils, the subject has potential for contributing to a more inclusive environment in secondary schools. The practical nature of the subject, moreover, should, in theory at least, have been able to contribute particularly well to the development of a community of practice (Wenger, 1998).In education, however, practice does not always reflect theory nor reality reflect the rhetoric. This paper examines the assumptions underlying the pedagogy and assessment methods outlined in the rationale for the subject in relation to current theory and concludes that a valuable opportunity for creating an inclusive community of learners has been missed. Whilst the paper focuses on the Woodworking Skills area of the course, other areas reflect a similar framework.  相似文献   

18.
In the United States cognitive research about technology education for the general educational purpose of technological literacy has suffered from a lack of a coherent focus. Certainly, there are studies that have addressed cognition, yet analysts of technology education research have been unable to coordinate their findings in any meaningful way (Streichler 1966; Dyrenfurth & Householder 1979; McCrory 1987; Zuga 1994). There are several persistent problems facing technology educators that contribute to the inability to develop clear interpretations or generalizations of the relationship of cognition and technology education. If some of those problems are identified, then, perhaps, we can address them in order to devise directions and strategies for studying cognition in technology education.  相似文献   

19.
There is a current vacillation in choosing hand or computer for design presentation in academia. Although the computer emerged as very powerful alternative presentation medium, it could not sweep away the hand totally. Believing that this vacillation cannot only be due to the positive and negative aspects of both media, we worked with a group of students in a design curriculum to observe the factors that affect their choice of medium for presenting design ideas. The students were required to use both media for the same task, subsequently their satisfaction and evaluation were examined through a questionnaire. Students acknowledged the positive aspects of both media, rather than accumulating on one side. Findings led us to concur that the constant oscillation of architecture between art and science penetrates down to the individual choice of presentation medium. We assert that the warmness of hand is not deserted as it contemplates the artistic essence, while the digital perfection of the computers flirt with science. The ever-attended, age-old question of architecture’s being art and/or science occupies the architectural agenda at various levels. Both the polarizations and the reconciliations have theoretical, practical and educational consequences. This paper locates itself within this context and proposes a new framework for analyzing the impacts of this oscillation in design presentation, concluding that the future of presentation in education points to the coexistence of both media.  相似文献   

20.
It is apparent from previous research that primary school teachers have very limited or narrow perceptions of design and technology and such views may affect adversely their ability and confidence to teach the key learning area of design and technology in the classroom. Therefore, it is the task of technology teacher educators to provide experiences that will broaden preservice teachers' perceptions of technology and technology education. This paper reports an investigation, using an interpretive research methodology, of preservice primary teachers' prior perceptions of design and technology and changes in their perceptions of design and technology as a result of their engagement in independent technology projects. Students enrolled in a one-year postgraduate teacher education program were the participants in the study and the methods of data collection included the use of survey instruments, interviews, field notes and students' reflective journals. The results indicate that the independent projects broadened and deepened the students' understandings of technology as a process. The implications of the approach for the design of technology education courses for preservice and inservice teachers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号