共查询到14条相似文献,搜索用时 0 毫秒
1.
Most of the operational problems in container terminals are strongly interconnected. In this paper, we study the integrated Berth Allocation and Quay Crane Assignment Problem in seaport container terminals. We will extend the current state-of-the-art by proposing novel set partitioning models. To improve the performance of the set partitioning formulations, a number of variable reduction techniques are proposed. Furthermore, we analyze the effects of different discretization schemes and the impact of using a time-variant/invariant quay crane allocation policy. Computational experiments show that the proposed models significantly improve the benchmark solutions of the current state-of-art optimal approaches. 相似文献
2.
Mihalis M. Golias Maria Boile Sotirios Theofanis 《Transportation Research Part E: Logistics and Transportation Review》2009,45(6):878-892
In this paper the discrete and dynamic berth allocation problem is formulated as a multi-objective combinatorial optimization problem where vessel service is differentiated upon based on priority agreements. A genetic algorithms based heuristic is developed to solve the resulting problem. A number of numerical experiments showed that the heuristic performed well in solving large, real life instances. The heuristic provided a complete set of solutions that enable terminal operators to evaluate various berth scheduling policies and select the schedule that improves operations and customer satisfaction. The proposed algorithm outperformed a state of the art metaheuristic and provided improved results when compared to the weighted approach. 相似文献
3.
A marine container terminal operator may have a situation with excessive calling requests to be served especially when some new service contracts are under consideration. For this situation, we propose a strategic berth template problem (BTPS) that selects the ships among the requesting ones to be served and arrange their berth-windows within a limited planning horizon. The BTPS employs the subgradient optimization procedure, which is an improved version of the procedure that the authors developed for the operational berth allocation problem. A wide variety of numerical experiments indicate the improved subgradient procedure works well for the BTPS. 相似文献
4.
In this paper, we study the dynamic hybrid berth allocation problem in bulk ports with the objective to minimize the total service times of the vessels. We propose two exact methods based on mixed integer programming and generalized set partitioning, and a heuristic method based on squeaky wheel optimization, explicitly considering the cargo type on the vessel. The formulations are compared through extensive numerical experiments based on instances inspired from real bulk port data. The results indicate that the set partitioning method and the heuristic method can be used to obtain near-optimal solutions for even larger problem size. 相似文献
5.
This paper considers the berth allocation problem (BAP) with time-varying water depth at a tidal river port. Both integer programming (IP) and constraint programming (CP) models are developed. Numerical experiments find that CP tends to be superior to IP when the feasible domain is small (e.g. dynamic vessel arrivals), when the restriction of the objective towards decision variables is loose (e.g. makespan, departure delay), or when the size of IP models is too large due to fine time resolution. Meanwhile, CP’s incapability of proving optimality can be compensated by post-optimization with IP, by using a simple CP/IP hybrid procedure. 相似文献
6.
This paper studies the location–allocation–configuration problem of emergency resources in a maritime emergency system and it proposes a discrete nonlinear integer-programming model, which integrates the location, allocation and the configuration problem. The model is converted into a two-stage model keeping the calculation logic. It designs a hybrid heuristic algorithm and a genetic algorithm. The test results show that the hybrid heuristic algorithm is more efficient than the genetic algorithm, the sensitivity analysis studies the influence of some parameters to the final solution and the Uncertainty–Sensitivity justification tool is used to evaluate the assumptions. 相似文献
7.
Changkyu Park Junyong Seo 《Transportation Research Part E: Logistics and Transportation Review》2010,46(1):171-185
This paper discusses the newly defined planar storage location assignment problem (PSLAP). We develop a mathematical programming model and GA-based and dynamic PSLAP heuristic algorithms for the solving procedure. Using the testing set, we compare the performance of GA-based and dynamic PSLAP heuristic algorithms. The mathematical programming model is utilized as a comparison criterion. The comparison results demonstrate that the dynamic PSLAP heuristic algorithm performs better than the other solving procedures. In addition, we describe simulation experiments conducted to investigate the effects of stock yard layout and production schedule instability on the operation of the block stock yard. 相似文献
8.
The classical revenue management problem consists of allocating a fixed network capacity to different customer classes, so as to maximize revenue. This area has been widely applied in service industries that are characterized by a fixed perishable capacity, such as airlines, cruises, hotels, etc.It is traditionally assumed that demand is uncertain, but can be characterized as a stochastic process (See Talluri and van Ryzin (2005) for a review of the revenue management models). In practice, however, airlines have limited demand information and are unable to fully characterize demand stochastic processes. Robust optimization methods have been proposed to overcome this modeling challenge. Under robust optimization framework, demand is only assumed to lie within a polyhedral uncertainty set (Lan et al. (2008); Perakis and Roels (2010)).In this paper, we consider the multi-fare, network revenue management problem for the case demand information is limited (i.e. the only information available is lower/upper bounds on demand). Under this interval uncertainty, we characterize the robust optimal booking limit policy by use of minimax regret criterion. We present an LP (Linear Programming) solvable mathematical program for the maximum regret so our model is able to solve large-scale problems for practical use. A genetic algorithm is proposed to find the booking limit control to minimize the maximum regret. We provide computational experiments and compare our methods to existing ones. The results demonstrate the effectiveness of our robust approach. 相似文献
9.
Operating airline hub-and-spoke networks (HSN) rather than direct flights among city pairs may significantly reduce supplier cost; however, passengers' travel time may significantly increase due to increased transfer and in-flight time. The costs considered in this study are hub-related and incurred by passengers and aircraft (i.e., passenger transfer, flight dwelling, and gate occupancy). The objective is to minimize the total cost by optimizing flight sequence (i.e., arrivals and departures) and gate assignment, while considering transfer speed, transfer demand, flight size, gate size and terminal configuration. A real-world HSN whose hub airport (HA) is located at Xianyang International Airport (XIY) in Xi'an, China is analyzed. The optimized solutions and their relations to various model parameters are explored. 相似文献
10.
蚁群算法是受自然界蚂蚁觅食过程中,基于信息素的最短路径搜索食物行为启发,提出的一种智能优化算法。在采用蚁群算法求解二次指派问题中,针对蚁群算法存在的过早收敛问题,使用距离及流量作为启发式信息并引入局部优化,对蚁群算法的结果加以改进,计算机仿真结果表明,蚁群算法对求解二次指派问题有较好的效果。 相似文献
11.
Every day, a blood center must determine a set of locations among a group of potential sites to route their vehicles for blood collection so as to avoid shortfalls. In this study, a vehicle routing problem is modeled using an integer programming approach to simultaneously identify number of bloodmobiles to operate and minimize the distance travelled. Additionally, the model is extended to incorporate uncertainty in blood potentials and variable durations in bloodmobile visits. Optimal routings are determined using CPLEX solver and branch-and-price algorithm. Results show that proposed algorithm solve the problem to optimality up to 30 locations within 3600 s. 相似文献
12.
A mixed-integer, non-linear model is developed for designing robust global supply chain networks under uncertainty. Six resilience strategies are proposed to mitigate the risk of correlated disruptions. In addition, an efficient parallel Taguchi-based memetic algorithm is developed that incorporates a customized hybrid parallel adaptive large neighborhood search. Fitness landscape analysis is used to determine an effective selection of neighborhood structures, while the upper bound found by Lagrangian relaxation heuristic is used to evaluate quality of solutions and effectiveness of the proposed metaheuristic. The model is solved for a real-life case of a global medical device manufacturer to extract managerial insights. 相似文献
13.
One of the main challenges of retail units is to determine the order quantities of different types of products, each with a specific expiry date, so that the system cost including shortage cost is minimized. We study a new multi-product multi-period replenishment problem for a First Expired-First Out (FEFO) based warehouse management system. The proposed nonlinear model is first converted to a linear one and then solved by applying two evolutionary algorithms: the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), in which design parameters are set using Taguchi method. Computational results demonstrate the applicability of the proposed model for perishable items and comparing the results shows the efficiency of the proposed metaheuristics as well. 相似文献
14.
This paper proposes a problem of passenger flow organization in subway stations under uncertain demand. The existing concepts of station service capacity are extended and further classified into three in different demand scenarios. Mathematical models are put forward to measure the three capacities and a unified simulation-based algorithm is developed to solve them. To increase computing speed, data envelopment analysis (DEA) and genetic algorithms (GA) are embedded in this algorithm. A case study will demonstrate the performance of the proposed algorithm and give a detailed procedure of passenger flow control based on station service capacity in various demand scenarios. 相似文献