首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The U.S. Department of Agriculture (USDA) currently uses a bidding system to determine carriers and suppliers that would partner in providing food aid annually in response to global emergencies and famine. We mimic the USDA approach via a robust optimization model featuring box and ellipsoid uncertainty frameworks to account for uncertainties in demand, supplier and carrier bid prices. Through a case study utilizing historical invoice data, we demonstrate our model applicability in improving ocean carrier and food supplier bid pricing strategy and similar supply chain network optimization problems. Through a validation algorithm we demonstrate the value of our robust models.  相似文献   

2.
《Transport Policy》2009,16(5):271-278
“Multi-crane oriented” is a scheduling method that yard trailers can be shared by different quay cranes. In this paper, two models for this problem are developed. The first one is a model for an inter-ship-based sharing method. In this model, yard trailers can be shared by quay cranes of different ships. To solve the model, a two-phase Tabu search algorithm is designed. The second one is a model for a ship-based sharing method. In this model, yard trailers can only be shared by quay cranes of the same ship. Q-learning algorithm is designed to solve the model. Numerical tests show that the “multi-crane oriented” method can decrease the yard trailers’ travel distance, reduce the disequilibrium of different working lines, and thus improve the operation efficiency in container terminals.  相似文献   

3.
This paper addresses the planning and optimization of intermodal hub-and-spoke (IH&S) network considering mixed uncertainties in both transportation cost and travel time. Different from previous studies, this paper develops a novel modeling framework for the IH&S network design problem to jointly minimize the expected value of total transportation costs and the maximum travel time requirement in term of critical value. A new hybrid methodology by combining fuzzy random simulation (FRS) technique and multi-start simulated annealing (MSA) algorithm is designed to solve the proposed model. Numerical experiments are implemented to verify the effectiveness of the proposed model and solution approach.  相似文献   

4.
One of great challenges in seaport management is how to handle containers under reshuffling, called reshuffles. Repositioning reshuffles in a bay (internal reshuffling) can improve the efficiency of quay cranes and help ports to reduce ship turn-around time. This paper studies the quay crane double-cycling problem with internal-reshuffling operations, and presents a fast solution algorithm. To reduce the number of operations necessary to turn around a bay of a vessel, the problem is first formulated as a new integer program. A polynomial-time heuristic is then developed. The analysis is made on the worst-case error bound of the proposed algorithm. Results are presented for a suite of combinations of problem instances with different bay sizes and workload scenarios. Comparisons are made between our algorithm and the start-of-the-art heuristic. The computational results demonstrate that our model can be solved more efficiently with CPLEX than the model proposed by Meisel and Wichmann (2010), and the proposed algorithm can well solve real-world problem instances within several seconds.  相似文献   

5.
This paper examines the design of liner ship route schedules that can hedge against the uncertainties in port operations, which include the uncertain wait time due to port congestion and uncertain container handling time. The designed schedule is robust in that uncertainties in port operations and schedule recovery by fast steaming are captured endogenously. This problem is formulated as a mixed-integer nonlinear stochastic programming model. A solution algorithm which incorporates a sample average approximation method, linearization techniques, and a decomposition scheme, is proposed. Extensive numerical experiments demonstrate that the algorithm obtains near-optimal solutions with the stochastic optimality gap less 1.5% within reasonable time.  相似文献   

6.
This paper examines the design of liner ship route schedules that can hedge against the uncertainties in port operations, which include the uncertain wait time due to port congestion and uncertain container handling time. The designed schedule is robust in that uncertainties in port operations and schedule recovery by fast steaming are captured endogenously. This problem is formulated as a mixed-integer nonlinear stochastic programming model. A solution algorithm which incorporates a sample average approximation method, linearization techniques, and a decomposition scheme, is proposed. Extensive numerical experiments demonstrate that the algorithm obtains near-optimal solutions with the stochastic optimality gap less 1.5% within reasonable time.  相似文献   

7.
The design of reverse logistics network has attracted growing attention with the stringent pressures from environmental and social requirements. In general, decisions about reverse logistics network configurations are made on a long-term basis and factors influencing such reverse logistics network design may also vary over time. This paper proposes dynamic location and allocation models to cope with such issues. A two-stage stochastic programming model is further developed by which a deterministic model for multiperiod reverse logistics network design can be extended to account for the uncertainties. A solution approach integrating a recently proposed sampling method with a heuristic algorithm is also proposed in this research. A numerical experiment is presented to demonstrate the significance of the developed stochastic model as well as the efficiency of the proposed solution method.  相似文献   

8.
This paper presents a robust formulation for the uncapacitated single and multiple allocation hub location problem where demand is uncertain and its distribution is not fully specified. The proposed robust model is formulated as a mixed integer nonlinear program and then transformed into a mixed integer conic quadratic program. An efficient linear relaxation strategy is proposed which is found to deliver the optimal solutions for all the cases considered in this paper. Numerical experiments suggest location of more number of hubs when accounting for demand uncertainty using robust optimization compared to the deterministic setting.  相似文献   

9.
One of the most important airline's products is to determine the aircraft routing and scheduling and fleet assignment. The key input data of this problem is the traffic forecasting and allocation that forecasts traffic on each flight leg. The complexity of this problem is to define the connecting flights when passengers should change the aircraft to reach the final destination. Moreover, as there exists various types of uncertainties during the flights, finding a solution which is able to absorb these uncertainties is invaluable. In this paper, a new robust mixed integer mathematical model for the integrated aircraft routing and scheduling, with consideration of fleet assignment problem is proposed. Then to find good solutions for large-scale problems in a rational amount of time, a heuristic algorithm based on the Simulated Annealing (SA) is introduced. In addition, some examples are randomly generated and the proposed heuristic algorithm is validated by comparing the results with the optimum solutions. The effects of robust vs non-robust solutions are examined, and finally, a hybrid algorithm is generated which results in more effective solution in comparison with SA, and Particle Swarm Optimization (PSO).  相似文献   

10.
This paper studies the robust optimization approach for the routing problem encountered in daily maintenance operations of a road network. The uncertainty of service time is considered. The robust optimization approach yields routes that minimize total cost while being less sensitive to substantial deviations of service times. A robust optimization model is developed and solved by the branch-and-cut method. In computational experiments, the behavior of the robust solutions and their performance are analyzed using Monte Carlo simulation. The robust optimization model is also compared with a classic chance-constrained programming model. The experimental analysis provides managerial insights for decision makers to determine an appropriate routing strategy.  相似文献   

11.
This paper discusses the quay crane scheduling problem at indented berth, an extension to the current quay crane scheduling problem in the field of container terminal operation. A mixed integer programming model by considering the unique features of the quay crane scheduling problem at indented berth is formulated. For solution, decomposition heuristic framework is developed and enhanced by Tabu search. To evaluate the performance of the proposed heuristic framework, a comprehensive numerical test is carried out and its results show the good quality of the proposed heuristic framework.  相似文献   

12.
This paper studies optimization methods for a routing problem encountered in daily maintenance operations of a road network. Stochastic service and travel times on road segments are considered. The problem is formulated as a variation of the capacitated arc routing problem (CARP). A chance-constrained programming model is firstly developed and solved by a branch-and-cut algorithm. A stochastic programming model with recourse is also proposed to take into account the recourse costs in case of route failure. The problem is solved by an adaptive large neighborhood search algorithm. The computational experiments demonstrate the effectiveness of the algorithm.  相似文献   

13.
A novel deterministic mathematical model is presented as part of research into a stochastic optimization model for the soybean supply chain in Brazil. The model was conceived as a tool to aid in the decision-making of any trader involved in this highly complex market. The model is intended to be applied to decisions related to tactical planning over a time span of one year. The major spatial and temporal components of the soybean complex, including transportation mode decisions, are incorporated into the model. The mathematical model is described in detail. Several stochastic parameters are used with fixed values in the deterministic model to construct various scenarios. These parameters are the purchase and sale prices of the grain on the market, the crop failure rate and the volumes of demand. The model was tested using data from a large trade in Brazil with consistent results.  相似文献   

14.
In this study, a dynamic allocation model using objective programming for berth allocation and quay crane assignments was preliminarily developed based on rolling-horizon approach. Afterwards, a hybrid parallel genetic algorithm (HPGA), which combined parallel genetic algorithm (PGA) and heuristic algorithm, was employed to resolve the proposed model. Furthermore, a simulation was conducted to evaluate the HPGA and to execute relevant gene repair techniques. Eventually, the numerical experiments on a specific container terminal were applied to illustrate the proposed models and algorithms. In so doing, the effectiveness of the proposed approach was verified.  相似文献   

15.
In this paper, we consider the optimization of loading sequence and rehandling strategy in the terminal operation. We present an optimization strategy to minimize the number of rehandles, and establish a mathematical model to integrate the loading sequence and the rehandling strategy under the parallel operation of multi-quay cranes. Furthermore, we give an improved genetic algorithm to solve the model. We show the efficiency of the optimization strategy and algorithm by comparing them with previous strategies and heuristics.  相似文献   

16.
Designing robust and resilient retail networks under operational and disruption risks can create substantial competitive advantage. In this paper, a deterministic multiple set-covering model is first proposed. Then, it is extended to a possibilistic scenario-based robust model by scenario generation and disruption profiling to design a robust and resilient retail network. The developed models are validated through randomly generated examples and a real case study in retailing. Numerical results demonstrate that designing retail chains without considering operational and disruption risks is really misleading. Also, multiple covering of retail stores as the measure of redundancy increases the network’s resilience significantly.  相似文献   

17.
A mixed-integer, non-linear model is developed for designing robust global supply chain networks under uncertainty. Six resilience strategies are proposed to mitigate the risk of correlated disruptions. In addition, an efficient parallel Taguchi-based memetic algorithm is developed that incorporates a customized hybrid parallel adaptive large neighborhood search. Fitness landscape analysis is used to determine an effective selection of neighborhood structures, while the upper bound found by Lagrangian relaxation heuristic is used to evaluate quality of solutions and effectiveness of the proposed metaheuristic. The model is solved for a real-life case of a global medical device manufacturer to extract managerial insights.  相似文献   

18.
基于改进型蚁群算法的货物作业车取送模型优化   总被引:2,自引:0,他引:2  
介绍了蚁群算法及其改进型的原理、模型和算法实现过程,并采用改进型算法对货物作业车取送数学模型进行了优化计算。优化计算结果表明,改进型蚁群算法的优化计算切实可行,为类似其他的铁路运输优化计算提供了新的思路和方法。  相似文献   

19.
Optimizing the block size in container yards   总被引:2,自引:0,他引:2  
A block is the basic unit of storage space in container terminals. This study proposes two methods for optimizing the block size, by considering the throughput requirements of yard cranes (YCs) and the block storage requirements. To estimate the YC performance, cycle-time models of various handling operations of YCs are analytically derived. Two types of container yards are examined: those with blocks that are laid out parallel to the quay and those laid out vertical to the quay.  相似文献   

20.
The classical revenue management problem consists of allocating a fixed network capacity to different customer classes, so as to maximize revenue. This area has been widely applied in service industries that are characterized by a fixed perishable capacity, such as airlines, cruises, hotels, etc.It is traditionally assumed that demand is uncertain, but can be characterized as a stochastic process (See Talluri and van Ryzin (2005) for a review of the revenue management models). In practice, however, airlines have limited demand information and are unable to fully characterize demand stochastic processes. Robust optimization methods have been proposed to overcome this modeling challenge. Under robust optimization framework, demand is only assumed to lie within a polyhedral uncertainty set (Lan et al. (2008); Perakis and Roels (2010)).In this paper, we consider the multi-fare, network revenue management problem for the case demand information is limited (i.e. the only information available is lower/upper bounds on demand). Under this interval uncertainty, we characterize the robust optimal booking limit policy by use of minimax regret criterion. We present an LP (Linear Programming) solvable mathematical program for the maximum regret so our model is able to solve large-scale problems for practical use. A genetic algorithm is proposed to find the booking limit control to minimize the maximum regret. We provide computational experiments and compare our methods to existing ones. The results demonstrate the effectiveness of our robust approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号