首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
2.
小波神经网络模型在河道流量水位预测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
鉴于BP神经网络学习收敛速度慢、参数选择困难、易陷入局部极值等缺点,提出小波神经网络河道流量水位预测模型,以盘龙河天保站流量水位预测为例进行分析。采用循环算法确定最佳BP神经网络结构,并在相同网络结构及期望误差等条件下,运用GA优化BP神经网络初始权值和阈值,构建传统BP、GA-BP神经网络河道流量水位预测模型作为对比预测模型。结果表明:小波神经网络结合了神经网络与小波分解在函数逼近上的优点,其预测精度高于传统BP和GA-BP网络模型,表明小波神经网络用于河道流量水位预测是合理可行和有效的,可为水文预测预报提供新的途径和方法。且小波神经网络模型具有计算简便、逼近能力强、收敛速度快,能有效避免局部极值等特点,有着广阔的应用前景。  相似文献   

3.
针对大坝变形时间序列的非线性及形变值累计特性,引入NARX神经网络进行分析并实现变形预测.首先,NARX神经网络通过非线性自回归网络与外源输入相结合,较好地解决了传统BP神经网络存在的收敛速度慢和易陷入局部极值等问题;其次,建立基于NARX神经网络的大坝变形预测模型,对原始数据预处理后采用周期为输入序列、变形值为输出序...  相似文献   

4.
将小波分析与传统的BP神经网络模型进行组合,提出了一种新的径流中长期预测方法。该方法对年径流序列进行Mallat小波分解,将分解后得到的不同尺度下的低频成分和高频成分分别进行Mallat算法重构,对重构系列采用BP神经网络模型进行预测。采用黄河三门峡站1470-2002年的年径流资料进行模型的预测和检验,并与传统的BP神经网络模型进行比较,研究结果表明小波神经网络在径流预测中具有较好的预报精度,可以成功地用于径流模拟和预测。  相似文献   

5.
针对多种水工建筑物相互作用和影响下的泵站水位预测难题,提出基于GRA-NARX(grey relation analysis-nonlinear autoregressive model with exogenous inputs)神经网络的泵站站前水位预测模型。该模型包括灰色关联分析(GRA)和NARX神经网络两部分,利用3种训练算法和不同时间延迟分别对密云水库调蓄工程屯佃泵站站前水位进行2 h预测,并与NARX模型和GRA-BP(grey relation analysis-back propagation)模型的预测结果进行比较。研究结果表明,GRA-NARX-BR(grey relation analysis-nonlinear autoregressive model with exogenous inputs-bayesian regularization)模型用于水位预测能够比较全面地考虑影响因子,预测精度高,相关系数最高达0.986 62,均方根误差最小为0.008 6 m,预测效果比NARX模型和GRA-BP模型好,且时间延迟越长,均方根误差越小。模型也可在其他调水工程中推广使用。  相似文献   

6.
胡纪元  鸿雁  周吕  陈冠宇 《人民黄河》2014,(10):126-128
针对传统的数学统计模型无法完全描述大坝变形量与多种荷载因素之间非线性映射关系的缺点,引入了一种基于遗传算法的小波神经网络模型,利用该模型对小波神经网络的初始权值、尺度因子进行全局优化搜索,克服了BP神经网络初始化的随机性以及网络易陷入局部极小值的不足,将该模型运用于大坝坝顶的径向、切向位移预测,结果表明,遗传算法优化的小波神经网络模型结构稳定性更好,预测精度较BP神经网络模型、小波神经网络模型有较大提高。  相似文献   

7.
应用小波神经网络模型对辽中平原地区地下水进行预测,并结合区域内实测的地下水水位井观测数据,分析了小波神经网络模型在地下水预测的适用性。研究结果表明:小波神经网络模型在辽中平原地区地下水预测具有较好的预测精度,预测和实测地下水水位之间的相对误差均在15%以内,绝对误差在0.08~2.39mm之间。研究成果对于辽中地区地下水预测具有参考价值。  相似文献   

8.
《人民黄河》2016,(12):89-92
为了提高水位预测的精确度,提出一种将灰色模型和神经网络模型相结合的灰色-BP神经网络预测方法。该方法通过分别计算灰色模型和神经网络模型预测结果的均方误差,按照误差计算权重并重新组合,得到最终的预测结果。研究证明,该方法比灰色模型和神经网络模型预测精度高,预报结果更加接近实测值。  相似文献   

9.
将小波变换应用到径流序列分析中,获得了黄河陕县水文站109年径流序列的组成情况和变化趋势。用BP神经网络与小波变换相结合,对该站109年径流序列进行了研究,认为:①小波网络预测模型是综合小波变换与神经网络两者优点而形成的一种数学建模分析方法;②小波神经网络的建模算法可有效提高预测精度;③小波神经网络预测中一些数据的预测结果欠佳,其原因主要是由于不存在理想的数字滤波器和误差累积所致。对影响结果的因素进行了分析,并对神经网络、小波神经网络在径流分析中的应用做了评价。  相似文献   

10.
ACA-BP网络在冰塞水位预测中的应用   总被引:1,自引:1,他引:1  
为了更准确地预测冰塞水位,将蚁群算法和神经网络结合起来建立了ACA-BP神经网络模型,并利用黄河河曲段实测资料对冰塞水位进行了预测。结果表明:ACA-BP网络和BP网络都有一定的逼近能力和预测能力;预测结果与实际冰塞水位基本吻合;ACA-BP网络的预测结果优于BP网络。  相似文献   

11.
在调水工程中,如果泵站站前水位过低,会危及泵站安全,如果水位过高,会危及周边安全,因此探寻调水工程中河渠湖库水位变化显得尤为重要。以南水北调东线山东段南四湖为研究区域,寻求不同起调水位、出入流量、泵站开启时间差的调水方案下泵前水位变化规律。先利用耦合模型对不同的调水方案进行数值模拟,然后选取23组调水方案及其数值模拟所得的泵前水位作为样本训练BP神经网络,建立BP神经网络调蓄水位预测模型并进行验证,最后利用预测模型对不同调水方案进行泵前水位预测。结果表明,BP神经网络预测模型具有很强的预测能力,预测模型结果与耦合模型结果泵前水位基本吻合,水深相对误差小于9.15%,而模型计算效率提升96.67%。  相似文献   

12.
针对延吉市地下水位变化情况,利用灰色--BP神经网络组合模型对地下水位变化趋势进行预测,提出地下水位的预测不能仅限于一种方法,应在充分分析影响水位变化各因素的基础上,采用合理的方法预测.  相似文献   

13.
针对水文时间序列的非平稳性特征,以长江三峡宜昌站1904~2003年年平均流量为例,分别建立了小波分析(WA)与BP神经网络和径向基函数神经网络(RBF)耦合的预测模型,探究了两种组合模型的预测效果,并与传统的单一人工神经网络模型对比;并采用5种常见的预测性能评价指标分析预测效果。结果表明:组合模型预测成果的精度较单一模型显著提高;组合和单一模型中RBF网络模型均优于BP网络模型;小波径向基函数神经网络组合模型具有较优的预测精度和泛化能力,是提高预测精度的有效方法,在径流预测中具有可行性。  相似文献   

14.
本文结合混沌理论、小波分解与重构,以及径向基函数(RBF)神经网络的优点,提出了一种基于混沌的大坝监测序列小波RBF神经网络预测模型。该模型主要利用小波分析将大坝监测序列分解为趋势项和细节时间序列,并利用RBF神经网络和基于RBF神经网络的混沌理论对两种时间序列进行预测,最后通过小波重构得到预测值。实例分析表明,本模型能够克服监测序列中的噪声干扰,反映大坝监测序列的多尺度特性,对监测数据的预测精度较高,可应用于实际工程。  相似文献   

15.
基于免疫进化算法的BP网络模型在径流预测中的应用   总被引:3,自引:0,他引:3  
在BP网络模型基础上,引入免疫进化算法,建立了基于免疫进化算法的BP网络模型。该模型在一定范围内随机生成初始权值群体,用BP网络进行训练,选择群体中具有最大适应度值的权值个体作为最优个体,应用免疫进化算法生成下一代权值群体,再用BP网络对权值群体进行训练,此迭代过程反复进行,直至达到问题求解精度要求为止。将该模型应用于新疆伊犁河雅马渡站的径流预测,并将预测结果与基本BP网络模型和基于遗传算法的模糊优选BP网络模型的预测结果进行比较,结果表明,该模型不仅精度较高,而且稳定性较好。  相似文献   

16.
将神经网络和模糊理论相结合建立模糊神经网络模型,从模糊神经网络角度并运用灰色系统理论对区域需水量进行预测,通过应用于盐城市在未来2010年需水预测的实例,计算分析结果表明该模型具有良好的可行性和合理性,可以借此深入分析外生变量与区域需水量之间的关系。  相似文献   

17.
结合神经网络与模糊逻辑,提出了一种新的控制方法,解决了对于非线性、时变、时滞严重、难以建立精确数学模型的动态控制问题。并应用于河流模型水位控制中,取得了很好的控制效果  相似文献   

18.
为有效预测未来一定时间内的连续水位,提出了基于序列到序列(Seq2Seq) 的短期水位预测模型,并使用一个长短期记忆神经网络(LSTM)作为编码层,将历史水位序列编码为一个上下文向量,使用另一个LSTM 作为解码层,将上下文向量解码来预测目标水位序列。以流溪河为研究对象,针对不同预测长度分别建立水位预测模型,并与LSTM 模型和人工神经网络(ANN)模型进行了对比。结果表明:Seq2Seq 模型对连续6 h、12 h 和24 h 水位预测的纳什效率系数最高分别为0.93、0.90和0.85;当预测长度为6 h 时,LSTM 和Seq2Seq 模型预测结果相似,ANN 模型精度较低;当预测长度为12 h 和24 h 时,Seq2Seq 模型相比LSTM 模型和ANN 模型预测效果更好,收敛速度更快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号