首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
这种方便的电路是为电池工作的设备而设计的。它能起到触摸接通电源,延时关闭电源的作用。图1示出了这种只需几百毫安的电路,图2与图1相似,但在输出端增加了一个FET管,使转换电流达到300mA。有源电子部分由6个施密特触发器(40106型组成),触摸键由两片小的,能通过人体的电阻互联的导电片组成。当这个键没有被触模时,R_1在IC_(1a)的输入端产生一个高电平,门电路之后跟随一个二极管D_1,只要IC_(1a)的输出为高电平,D_1就能保证使C_1充电。当这个键被触摸时,C_1被迅速充电,这个  相似文献   

2.
图中所示电路输出正比于温度的电流(4~20mA)。该电路工作电压8至40V。电路经调整后,PSR指标超过0.0003%/V,在-50℃到+150℃温度范围内精度可达±1%。IC1输出电压V_(TEMP)正比于温度变化使电路作为温度传感器,并相当于一个2.5V参考信号。V_(TEMP)在25℃时等于0.55V,温度系数为1.9mV/℃。微功耗,单电源运算放大器IC_2缓冲了V_(TEMP)端上的漏电流,该运放功耗电流不大于50nA,  相似文献   

3.
635.过压保护  电子线路不能在过高的电源电压下工作。利用如图所示的保护电路就可避免这一情况。如果通过IC的电流变得过高 ,或者IC过热时 ,外部可控硅整流器 (Th1)被触发 ,于是电源电压被短路 ,因而启动电源中的限流或者烧毁保险丝 ,从而保护了正在供电的电路。在该图中 ,当电源电压超过 5V时 ,过压保护电路就会起作用 ,但可设置为 3.3~ 9V范围内的任意值。分压器R1-R2 把IC1的ADJ引脚处的电源电压减小到 1.19V (额定值 )。只要该引脚的电平≤ 1.14V ,IC1就保持在备份模式 ,耗电约为 70 μA。当引脚的电压高于 1.1…  相似文献   

4.
图示电路中场效应管起开关作用,当电源V_(cc)存在时,由V_(cc)向存贮器供电。V_(cc)断电时,由电池给存贮器供电。当V_(cc)低于电池B_1的电压时,场效应管关断(开路),而V_(cc)高于电池的电压时,比较器IC_1输出为高,使Q_1导通,Q_1接为倒相方式。在这种方式下,Q_1能通过1A的电流,电压降低于80mV,V_(cc)断电时,Q_1在电池供电前关  相似文献   

5.
31.宽范围(140分贝)电流-频率变换器本电路可把光电二极管的电流变换为频率,产生从0.1赫至1兆赫的输出信号.在0.1赫至100千赫的频率,变换有较好的线性度,但在100千赫以上的频率则为非线性.电容器C_1和运算放大器构成一个积分器.外部光使光电二极管D_1诱发电流.集成电路IC_1最上部的两个开关,使这一电流从积分器  相似文献   

6.
如图1所示的电路是一“窗”比较器,该电路可以用来在规定“窗”内出现波形时产生一个输出脉冲,即每次输出脉冲反映了在参考电压V_(REFLOW)以上,V_(REF HIGH)以下的输入脉冲电压或电平的变化。在单稳态多谐振荡器电路IC_(2A)和IC_(2B)输入  相似文献   

7.
341.低功耗稳压器便携式稳压器,电池供电的设备必须具有最低的功耗,良好的热稳定性并且能传送适当的电流。这些要求可用精密单片集成器件公司(Precision Monlithics Inc.—PMI)生产的IRF9530 MOSFET系列的稳压器来得到满足。它的主要贡献之一,是激励电流低。也就是两个OP90型运算放大器对它激励并在产生参考电压的同时引出的电流只有20μA。电路IC_2用IC_1提供的参考电压与R_6~R_7分  相似文献   

8.
一、设计制造的特点 (1)混合集成电路根据用户要求提供相应特性的电源,混合集成电源是最适宜的。在设计安装特殊元件的电路时,安装表明性能功能的检流元件的恒电流电路和安装电压垂下型短路保护电路的恒电压电路更是充分利用混合集成电路优点的设计。 (2)树脂封装树脂造型是主耍的封装形式,工业和民用机器用的封装是在严格质量控制的基础上进行生产的。封装外形尺寸取20×11.5×6。树脂封装自由度大而且能按照特殊用途进  相似文献   

9.
图1所示的数字控制振荡器可用作开关电容滤波器的钟频信号源,而其价格不到1美元.工作时,节点A(施密特触发器倒相器IC_(2A)的输入端)的电压在滞后门限之间振荡.数/模转换器IC_1,通过控制进入引脚4(I_0)的电流(这一电流确定电容C_1的充电速率)调定振荡频率.  相似文献   

10.
图中所示电路的输出脉冲重复频率等于两个输入脉冲重复频率F_0,F_1之差,这里F_1相似文献   

11.
图1所示电路中,模拟开关IC_1在电源断电时,可以由输入信号对其供电,输入信号幅度大于4V,信号频率高于1 KHz。正常工作时,电源电压(V~+)是12V,为了与TTL电平兼容,在V_L端接5V电源。这些电源都存在时,当1N_2为低逻辑电平时,开关闭合,相当于一个45Ω的电阻。如果V_L和V~+断开,开关变为一个辅助电源提供拉电流,一般的CMOS开关在这种情况下会损坏,而保护二极管D_1和D_2起了限流作用,防止芯片从信号源取得电流过大。正脉冲输入时,使钳位二极管D_3导通,给C_1充电,C_1上的充电电荷给芯片供电,芯片工作电流小于1μA。由输入信号供电时,输出信号不会发生变化,这时开关相当于一个100Ω  相似文献   

12.
许多微处理机,在电源接通还未达到稳定之前,是由一个简单的RC电路维持复位状态。而当为了节电使μP电源电压降低时,这种电路就不能提供复位脉冲,也不能保护后备电池供电的RAM系统,使其避免伪写操作。图中所示电路却具有提供复位信号和防止伪写操作的功能。比较器IC_(1A)根据门槛电平检测5V电源。调节R_1设置门槛电平。如将门槛电平设置为4.75V,即使比较器在该电平时输出为低,电  相似文献   

13.
D触发器的置位和清零(S,C)端是以电平方式工作的。图所示电路,可以用信号的变化,使D触发器置位或清零。本例中D触发器IC_(1A),产生一个正跳变输出,表示缓冲器满。外部信号XFERIN及XFER OUT分别表示装入不装入(图中未标出)。但这两个信号不能直接控制D触发器IC_(1A)的状态,按图所示在电路中加入另一个D触发器IC_(1B)后,XFER IN由低电平到高电平跳变  相似文献   

14.
图(a)所示电源电路将+12V到15V的正电源转换为-5.2V输出,并能提供0到50mA的电流.当使用未调节的15V供电时,应象图(b)那样加上预调节电路.工作时,555时基电路的频率随负载电流而变化.在3脚得到的正的输出脉冲,并按一  相似文献   

15.
《国际商务研究》1996,36(2):63-68
新颖应用电路·实用电路集ANP.531~536531.分立元件电源电路在进入集成稳压电源的当今时代,很多的设计师仍然喜欢分立元件的老式电源结构。在10A的峰值电流时,它能提供精确预置的13.8V的输出电压并有短路保护功能。如果暂不考虑围绕T1的电路级...  相似文献   

16.
图1是一可调稳压器的简化框图,该稳压器可提供对电流和电压的精密控制并且能自动从一种模式转换到另一种模式。图中电位器R_v设定所稳定的电压;R_1决定稳定电流。此设计避免了在电流电压稳定电路中经常的折衷,因精密运放IC_3作为一电压跟随器并作为具有零下降电压的电流传感器。利用从电压调整环中移去负载电流传感工作的方法,此运放允许电路完成电流和电压的精密调整;即IC_3仅允许负载电流I_s在自己的反馈电阻R_3内流过而强迫V_(OUT)等于被稳定的电压(V_(AB))。因而电压工作模式有下面关系存在: V_(OUT)=V_(AB)+∈_V=V_(REF)R_V/R_1+∈_V, 式中∈是加到V_(AB)上的误差电压: ∈_V=±V_(OS)-I_LR_S/A_O V_(OS)和A_O分别是IC_3的输入失调电压和开环增益。例如将运放07的保证说明书与I_SR_S的最大值相结合(0.6V)得到对于任何输出电压,∈_V≤27V。在电流控制模式, I_L=I_S+∈_1≈V_(REF)R_I/(R_2R_S)+∈_1, 和∈_1=±(I_(OS)+I_B/2) 式中∈为IC_3的误差贡献,I_B和I_(OS)是IC_3的输入偏置和失调电流。再者,从OP-07保证说明书得到作为一个绝对值,对于任何负载电流∈_1≤4nA。利用补偿Q_1的截止电流I_(CO)的方法,电流吸收I_Q>I_(CO)把输出电流的较低限范围扩展到接近于零。二极管D_1和D_2保证此补偿使输出接近于0V。图2给了一实际的电路图,它可提供范围从0-300V和10nA到20mA的稳定输出。精度和漂移实际上与REF-05稳压器(IC_5)相同。额外的元件(同图1比较)加强了分辨力和可靠性。例如,D_8-D_(13)防止运放输入过载。频率补偿元件是在电压环内C_1,R_5,C_2和R_7以及在电流环内的C_3和R_1~0。Q_4提高IC_4的输出电流能力。Q_3,D_1,D_2和R_2构成电流吸收电路(如图1中I_Q)。为了修正在主电流控制环内慢响应引起的任何可靠性损失,Q_2和R_1形成输出电流的快速控制通道。  相似文献   

17.
图中所示的电路可以在单一的5V电源下输出幅度0到5V间变化。8位的CMOS D/A转换器(IC_1)在电路中所起的作用象一个电压控制的数字电位器。即当对1脚加入1.25V参  相似文献   

18.
在通常使用的交流耦合RC触发器中,小的RC时间常数是功率消耗主要原因(见图a)。例如,100ns的RC器件,消耗功率10mw一是两片LSTTL门的两倍多。但若按图(b)简单地重新连接R_2和R_1,其电路功耗减半而性能更佳。图(b)中的电阻接法消除了电路中RC网络不工作时的损耗。例如,当IC_(1a)的2脚输入是逻辑“0”时,R_1和R_2功耗为零,这是因为电阻的两端电压都是5V。同时,IC_(1b)的输出逻辑“0”让电流通过R_3和R_1并在5脚输入端产生3V电压(逻辑“1”)。负跳变加在C_2上触发该触发器;而类似的信号加在C_1上将再次触发触发器。值得一提的是:在电路中,未工作的RC网络把门电压提升到V_(cc)(不在门输入线性区,会增加功耗)。  相似文献   

19.
图中所示的测速电路仅需一片IC(除计数器外),其精度可达到以前介绍的三片IC的电路精度并且消除了游移现象。标准的轴旋转码盘A和B通道产生与轴旋转同频的方波信号。A的相位超前或滞后于B90°,其取决于旋转方向。为了获得最大分辨率,测速电路必须计数A和B信号每一次状态变化,输入的每一次变化在IC_(1A)输出端产生一次状态变化,并在IC_(1c)的输出端产生1μs的负跳变,时钟脉冲的正跳变沿使计数器加或减计数。加或减由轴旋转方向确定。一般选择R_1C_1时间常数大约是R_2C_2乘积的二倍,以保证与时钟脉冲正沿有关的加/减计数信号有一适当的建立时间和保持时间。IC_(1c)产生与IC_(1A)正或负变化相同周期的时钟脉冲,满足了定时要求。  相似文献   

20.
如图所示在第一级数字计数器间插入一个异或门,构成的倍频电路,可以用于有噪声干扰的工业环境,电路可用一般的计数器和异或门构成。将异或门串接在计数器的时钟输入端成为一个数字控制的反相器。计数器的最低位输出作为控制信号。电路复位后,计数器的Q_0输出为低电平,异或门IC_1(MC14070B)相当于一个同相缓冲器。计数器IC_2(MC14518)在时钟正跳变边沿计数。当时钟输入正跳时,IC_2的Q_0输出变为高电平(图b),这时的异或门又相当于一个反相器。在输入信号的负跳边沿出现时,计数器的时钟输入端产生正跳变,又使Q_0输出变为低电平。输入信号使这一系列操作重复进行,其结果时钟信号的频率为输入信号频率的2倍,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号