共查询到19条相似文献,搜索用时 109 毫秒
1.
糯扎渡心墙堆石坝土石方调配平衡研究 总被引:1,自引:0,他引:1
通过分析糯扎渡心墙堆石坝土石方填筑和开挖工程之间的料源平衡和进度协调的关系,采用线性规划方法 ,结合施工中的实际因素,建立土石方调配优化数学模型。通过实际运用,达到了节约资源、节省费用、合理快速施工的目的。 相似文献
2.
3.
糯扎渡水电站心墙堆石坝最大坝高261.5m,为在建的强震区超高土石坝,抗震设防烈度为9度,100年超越概率1%的基岩缝制加速度达0.436g。本文系统介绍了糯扎渡大坝的防震抗震研究成果及采取的抗震措施,可供其它类似工程参考。 相似文献
4.
5.
6.
糯扎渡水电站初拟装机容量560万kW,心墙堆石坝量大坝高258m,在可行性研究的选坝阶段,对推荐坝型的各材料分区方案分别进行了平面有限元应力应变分析,得出了合理性结论。并对下一步坝体优化设计提出了建议。 相似文献
7.
8.
9.
10.
11.
鲁布革水电站心墙堆石坝采用总应力法和有效应力法计算程序进行计算和分析。成果表明:总应力法比有效应力法大些;平面有限元比三维有限元大些。如心墙的最大沉降值;平面总应力法比平面有效应法大19.5%,平面有效应力法比三维大10%左右;有效应力法与原型观测值比较接近。总的看来应力和位移的分布规律大体上一致。 相似文献
12.
金平水电站沥青混凝土心墙堆石坝坝高91.5 m,坝址覆盖层很厚,设计中对坝基进行振冲碎石桩加固,采用一道全封闭混凝土墙防渗.坝坡稳定采用毕肖普法和瑞典圆弧法计算,坝体和坝基的应力和变形采用三维有限元增量法计算. 相似文献
13.
14.
为了优化设计和安全评价,对某300 m级超高直心墙堆石坝和作为比较方案的斜心墙堆石坝进行了三维有限元应力变形计算。对坝体堆石料采用邓肯张E-B非线性弹性模型,对高塑性黏土与混凝土结构接触面采用Goodman单元模型,分43级荷载对坝体的施工和蓄水过程进行模拟,比较分析两种坝型在蓄水期坝体和心墙的应力和变形性状。结果表明,相对直心墙方案,斜心墙方案计算所得坝体的最大水平位移相对较小,垂直沉降较大。斜心墙方案下心墙两岸坝肩处高应力水平区域有所减小,可以适当改善心墙上游面单元的应力和变形条件。斜心墙方案下心墙的拱效应相对较弱,其抗水力劈裂的性能稍好。 相似文献
15.
介绍毛尔盖心墙堆石坝概况:最大坝高为147 m,河床覆盖层厚度为30~50 m,拟用混凝土防渗墙对坝基进行防渗处理。在分析防渗墙与心墙防渗体各种连接形式的优缺点之后,结合本工程实际和工程经验,选定防渗墙按硬接头接廊道的连接形式。进行有限元计算分析,确定防渗结构参数,防渗墙仅取1道,墙厚1.4 m。实践表明,采用该方案防渗墙和廊道内的应力适中、投资较少。 相似文献
16.
黏土心墙土石坝是重要的挡水建筑物,心墙的低渗透性可以大幅降低坝体水力梯度,减少坝体发生渗透破坏的风险。然而心墙的质量问题(如局部高渗透区)会影响坝体的渗透稳定性,甚至酿成管涌溃坝等严重后果。以瀑布沟心墙土石坝为原型开展坝体渗流大型水槽模型试验,并结合有限元数值模拟方法研究高渗透区对坝体内部渗流场和渗流稳定性的影响。试验表明高渗透区域将改变心墙的渗流场,成为优势渗流通道,导致高渗透区域附近孔压值大幅上升,同时高渗透区域的存在将显著提升坝体渗漏速率。试验与模拟结果一致表明,随着高渗透区域逐步上移,高渗透区所在位置处的孔隙水压力增大,坝体渗漏量减小。高渗透区和心墙的渗透系数增加都会使心墙孔压值和渗漏量增加;随着高渗透区的渗透系数的增大,心墙坝渗流稳定性系数降低,导致坝体稳定性下降;随着心墙渗透系数的增大,高渗透区水力梯度略微减小,但心墙整体临界水力梯度下降,坝体稳定性降低。所得结论可为基于监测数据反演分析心墙的质量问题和评估坝体的安全性能提供依据。 相似文献
17.
18.
19.
针对寒冷地区混凝土面板堆石坝设计性施工的特点,对参结构耐久性设计有如下要求,在水位变动区采用抚顺硅酸盐大坝525号水泥;混凝土抗冻标号为D300(快冻);坟强度为R28300;抗渗S8。此外,还针对寒冷地区此种坝型垫层料与小区料选择及其设计玄武岩地区趾板基础工程处理。 相似文献