共查询到8条相似文献,搜索用时 15 毫秒
1.
This article proposes a novel approach to portfolio revision. The current literature on portfolio optimization uses a somewhat naïve approach, where portfolio weights are always completely revised after a predefined fixed period. However, one shortcoming of this procedure is that it ignores parameter uncertainty in the estimated portfolio weights, as well as the biasedness of the in-sample portfolio mean and variance as estimates of the expected portfolio return and out-of-sample variance. To rectify this problem, we propose a jackknife procedure to determine the optimal revision intensity, i.e. the percent of wealth that should be shifted to the new, in-sample optimal portfolio. We find that our approach leads to highly stable portfolio allocations over time, and can significantly reduce the turnover of several well established portfolio strategies. Moreover, the observed turnover reductions lead to statistically and economically significant performance gains in the presence of transaction costs. 相似文献
2.
It is well known that when the moments of the distribution governing returns are estimated from sample data, the out-of-sample performance of the optimal solution of a mean–variance (MV) portfolio problem deteriorates as a consequence of the so-called “estimation risk”. In this document we provide a theoretical analysis of the effects caused by redundant constraints on the out-of-sample performance of optimal MV portfolios. In particular, we show that the out-of-sample performance of the plug-in estimator of the optimal MV portfolio can be improved by adding any set of redundant linear constraints. We also illustrate our findings when risky assets are equally correlated and identically distributed. In this specific case, we report an emerging trade-off between diversification and estimation risk and that the allocation of estimation risk across portfolios forming the optimal solution changes dramatically in terms of number of assets and correlations. 相似文献
3.
We present a framework for hedging a portfolio of derivatives in the presence of market frictions such as transaction costs, liquidity constraints or risk limits using modern deep reinforcement machine learning methods. We discuss how standard reinforcement learning methods can be applied to non-linear reward structures, i.e. in our case convex risk measures. As a general contribution to the use of deep learning for stochastic processes, we also show in Section 4 that the set of constrained trading strategies used by our algorithm is large enough to ε-approximate any optimal solution. Our algorithm can be implemented efficiently even in high-dimensional situations using modern machine learning tools. Its structure does not depend on specific market dynamics, and generalizes across hedging instruments including the use of liquid derivatives. Its computational performance is largely invariant in the size of the portfolio as it depends mainly on the number of hedging instruments available. We illustrate our approach by an experiment on the S&P500 index and by showing the effect on hedging under transaction costs in a synthetic market driven by the Heston model, where we outperform the standard ‘complete-market’ solution. 相似文献
4.
This paper introduces novel ‘doubly mean-reverting’ processes based on conditional modelling of model spreads between pairs of stocks. Intraday trading strategies using high frequency data are proposed based on the model. This model framework and the strategies are designed to capture ‘local’ market inefficiencies that are elusive for traditional pairs trading strategies with daily data. Results from real data back-testing for two periods show remarkable returns, even accounting for transaction costs, with annualized Sharpe ratios of 3.9 and 7.2 over the periods June 2013–April 2015 and 2008, respectively. By choosing the particular sector of oil companies, we also confirm the observation that the commodity price is the main driver of the share prices of commodity-producing companies at times of spikes in the related commodity market. 相似文献
5.
Laura Andreu 《Quantitative Finance》2013,13(5):819-830
This paper examines the ability of balanced pension plan managers to successfully time the equity and bond market and select the appropriate assets within these markets. In order to evaluate both market timing abilities in these balanced pension plans, we extend the traditional equity market timing models to also account for bond market timing. As far as we know, we are among the first to apply this multifactor timing model to investigate equity and bond market timing simultaneously. This performance evaluation has been conducted on two samples of Spanish balanced pension plans, one with Euro Zone and one with World investment focus. This allows us to decompose managers’ skills into three components: selectivity, equity market timing, and bond market timing. Our findings suggest that the average stock-picking ability of pension plans is positive. World schemes tend to have positive bond timing skills, while Euro Zone pension plans are on average not able to time equity or bond markets. 相似文献
6.
7.
This paper proposes a new methodology to compute Value at Risk (VaR) for quantifying losses in credit portfolios. We approximate the cumulative distribution of the loss function by a finite combination of Haar wavelet basis functions and calculate the coefficients of the approximation by inverting its Laplace transform. The Wavelet Approximation (WA) method is particularly suitable for non-smooth distributions, often arising in small or concentrated portfolios, when the hypothesis of the Basel II formulas are violated. To test the methodology we consider the Vasicek one-factor portfolio credit loss model as our model framework. WA is an accurate, robust and fast method, allowing the estimation of the VaR much more quickly than with a Monte Carlo (MC) method at the same level of accuracy and reliability. 相似文献
8.
To execute a trade, participants in electronic equity markets may choose to submit limit orders or market orders across various exchanges where a stock is traded. This decision is influenced by characteristics of the order flows and queue sizes in each limit order book, as well as the structure of transaction fees and rebates across exchanges. We propose a quantitative framework for studying this order placement problem by formulating it as a convex optimization problem. This formulation allows the study of how the optimal order placement decision depends on the interplay between the state of order books, the fee structure, order flow properties and the aversion to execution risk. In the case of a single exchange, we derive an explicit solution for the optimal split between limit and market orders. For the general case of order placement across multiple exchanges, we propose a stochastic algorithm that computes the optimal routing policy and study the sensitivity of the solution to various parameters. Our algorithm does not require an explicit statistical model of order flow but exploits data on recent order fills across exchanges in the numerical implementation of the algorithm to acquire this information through a supervised learning procedure. 相似文献