首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Blue sucker (Cycleptus elongatus) populations occur in the Mississippi River and Gulf of Mexico drainages of North America and are negatively affected by habitat fragmentation and flow regime alteration caused by dams. During fish assemblage surveys in August of 2022, we collected five juvenile blue suckers (312–428 mm total length) in the Angelina River upstream of Sam Rayburn Reservoir in East Texas (46,335 ha surface area) where the occurrence of the species was previously unconfirmed. Given this unexpected finding, we (1) analyzed mesohabitat associations to compare habitats we sampled with reports in the literature and (2) reviewed blue sucker occurrences in state, national, and global databases across historical (1950–1980) and contemporary (1981–2022) time periods to assess occurrence across gradients of habitat fragmentation and streamflow regulation. The blue sucker population in the Angelina River upstream of Sam Rayburn Reservoir was previously unconfirmed but is within the native range. Mesohabitats occupied by blue suckers were consistent with literature reports, including fast velocity, shallow depth, and coarse substrates. The low degree of regulation (19% of natural runoff stored by upstream reservoirs) and a high degree of habitat connectivity (287 rkm of unfragmented mainstem habitat) for the Angelina River upstream of Sam Rayburn Reservoir matched range-wide patterns of persistence within relatively intact (unfragmented and unregulated) or remnant (fragmented but unregulated) riverscapes. Our review reveals that blue sucker populations might persist (1) in remnant river fragments where local habitat conditions are appropriate and (2) where effects of habitat fragmentation and flow regulation are not coupled.  相似文献   

2.
Many streams have been modified so extensively that river managers do not have clear reference conditions to frame targets for stream restoration. Large woody debris (LWD) has long been recognized as an important influence on both geomorphic and ecologic processes in stream channels; however, there have been few studies of LWD dynamics in New England. Although this region is heavily forested today, the forest is predominantly young (70–90 years old) regrowth following a historical episode of severe deforestation. This study presents the results of an extensive census of LWD and associated stream characteristics in over 16 river kilometres of northeastern Connecticut streams and represents the first reported inventory of wood loading and sorting in Southern New England. Results of this study indicate that wood loading and jam frequencies in the study region are low: 2.5–17.8 and 0.5–5.51 per 100 m, respectively. Orientation of LWD is predominantly parallel to flow, an indication that these streams are not retaining organic matter or sediment, which has important geomorphic and ecologic implications. Results imply that stream recruitment of LWD is still lagging from the massive forest conversions of the 18th and 19th centuries. Given the low wood loadings observed in the study reaches, manual wood addition and continued forest regeneration would likely improve both habitat diversity and organic matter and fine sediment retention in these systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
    
Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed‐scale processes. When stream gages read zero, this may indicate that the stream has dried at this location; however, zero‐flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero‐flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to inaccurate hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero‐flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human‐driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero‐flow interpretations. We also highlight additional methods for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero‐flow gage readings and implications for reach‐ and watershed‐scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero‐flows will only attain greater importance in a more variable and changing hydrologic climate. This article is categorized under:
  • Science of Water > Methods
  • Science of Water > Hydrological Processes
  • Water and Life > Conservation, Management, and Awareness
  相似文献   

4.
    
River regulation can alter the structural complexity and natural dynamics of river ecosystems substantially with negative consequences for aquatic insects. However, there have been few studies of regulation effects on the export of emergent insects into terrestrial ecosystems. In northern Scandinavia, we compared emerged aquatic insect and terrestrial invertebrate biomass between four strongly regulated and four free‐flowing rivers using fortnightly measurements at three upland‐forest blocks in each over one summer. The biomass of emerged aquatic insects was significantly lower along regulated rivers than free‐flowing rivers. Biomass in Linyphiidae, Opiliones, Staphylinidae, total Coleoptera, Formicidae and total terrestrial invertebrates was also lower along regulated rivers. Aquatic insect biomass did not explain the entire regulation effect on terrestrial invertebrates but did explain significant variations among Linyphiidae, total Coleoptera, Formicidae and total terrestrial biomass. Variations in Formicidae also explained significant variance among several terrestrial taxa, suggesting some keystone role in this group. Overall, our results suggest that river regulation affects upland‐forest invertebrate communities, with at least some of these effects arising from links between aquatic emergence and terrestrial predators. The data highlight the need to consider areas beyond the riparian zone when assessing the effects of river regulation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
张勇 《人民长江》2015,46(2):111-114
为加强向家坝水电站蓄水期间的安全监测,对枢纽建筑物实施了变形(水平及垂直位移、接缝开合度和基岩变形)、渗流渗压以及应力应变监测,并开展了泄洪消能建筑物水力学专项监测工作,获取了大量监测数据。监测结果分析表明,大坝蓄水后,大坝主体、右岸引水发电系统、边坡等部位的变形、应力应变以及渗流渗压值均趋于稳定,变化规律基本合理。枢纽建筑物工作性态总体正常。  相似文献   

6.
Because lately the low bioindicative value of tolerant species from different taxonomic groups is often questioned, in this study, we hypothesized that tolerant diatoms may be used for effective temporal assessments of human pressure. We tested this on the lowland Bzura River in central Poland, on 156 diatom samples (DSs) from two study periods of 1972 with extremely severe point‐source water pollution and of 2002–2004, where the complex wastewater management in the river catchment improved water quality considerably. Out of the total 295 diatom species recorded in the samples, only 133 tolerant ones were included in the study. Patterns in their abundance were recognized with a Kohonen artificial neural network (self‐organizing map, SOM), whereas the species significantly associated with each SOM cluster of diatom samples were identified with the indicator value (IndVal) index and the Monte Carlo test. If the hypothesis tested was not supported, the assignation of DSs to the SOM clusters would be random. However, the separation of DSs from 1972 and 2002–2004 was almost perfect because the number of exceptions was as low as 4.5%. In addition, the relatively high number (64 out of 133) of tolerant species significantly associated with any SOM cluster (and respective environmental conditions at sites from which samples assigned to it come) supports the hypothesis tested. This means that almost half of the studied species are not evenly distributed in particular clusters as might be expected for highly tolerant species. The study proves that the abundances of many diatom species, currently classified as tolerant, carry quite precise information on the differences in the quality of the environment, and indicates those tolerant diatom species whose bioindicative potential may be highest. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
    
Responses of macroinvertebrate communities to human pressure are poorly known in large rivers compared with wadeable streams, in part because of variable substrate composition and the need to disentangle pressure responses from underlying natural environmental variation. To investigate the interaction between these factors, we sampled macroinvertebrates from the following: (i) submerged wood; (ii) littoral substrates < 0.8 m deep; and (iii) inorganic substrates in deep water (> 1.5 m) benthic habitats in eleven 6th‐ or 7th‐order New Zealand rivers spanning a catchment vegetation land cover gradient. Cluster analysis identified primary site groupings reflecting regional environmental characteristics and secondary groupings for moderate gradient rivers reflecting the extent of catchment native vegetation cover. Low pressure sites with high levels of native vegetation had higher habitat quality and higher percentages of several Ephemeroptera and Trichoptera taxa than sites in developed catchments, whereas developed sites were more typically dominated by Diptera, Mollusca and other Trichoptera. Partial regression analysis indicated that the combination of underlying environment and human pressure accounted for 77–89% of the variation in Ephemeroptera, Trichoptera and Plecoptera taxa richness, %Diptera and %Mollusca, with human pressure explaining more variance than underlying environment for %Mollusca. Analysis of replicate deepwater and littoral samples from moderate gradient sites at the upper and lower ends of the pressure gradient indicated that total Trichoptera and Diptera richness and %Diptera responded to land use differences in these boatable river catchments. Responses to human pressure were substrate specific with the combination of littoral and deepwater substrates providing the most consistent response and yielding the highest number of taxa. These results indicate that multiple substrate sampling is required to document the biodiversity and condition of boatable river macroinvertebrate communities and that spatial variation in the underlying natural environment needs to be accounted for when interpreting pressure–response relationships. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
    
Recent studies have highlighted cities as prime locations for the introduction, establishment, and spread of non‐native and invasive species. As the hydrological arteries of cities, urban river corridors have an important role to play in influencing species invasions. This overview examines existing literature to consider (a) how the landscape functions of urban river corridors (habitat, conduit, barrier/filter, sink, and source) relate to species invasions; (b) the organismal and geographical foci of research into non‐native species invasions along urban rivers; and (c) the need to more fully consider the roles that non‐native species may play in the recombinant communities of novel urban river ecosystems. The review ends with an identification of research priorities at the intersection of urban river corridor function and invasion biology.  相似文献   

9.
    
Unconventional oil and gas (UOG) extraction using fracking can damage groundwater resources, a crucial resource in many countries. Protecting groundwater will become more urgent as climate change and population growth increase pressure on water demand, especially in water‐scarce countries. But despite the strategic importance of groundwater, it is often poorly managed during UOG extraction. This review considers three types of regulation (command‐and‐control, market‐based and voluntary) in countries where UOG extraction is allowed, to identify the best suite of regulations to protect groundwater resources during this process. We propose a regulatory framework that includes both “hard” command‐and‐control regulations and “soft” market‐based and voluntary regulations. If regulations are to protect groundwater resources effectively, public disclosure of UOG operations must be required and the information must be stored in publicly accessible databases. This would allow for independent scientific review of data by academia and the private sector, in addition to government scrutiny of the data. These parties can then make recommendations to government, allowing timeous and appropriate adaptive management and the amendment of regulations as necessary. And, most importantly, these regulations must be properly enforced to avoid (in some cases irreversible) damage to groundwater resources. This article is characterized under:
  • Engineering Water > Sustainable Engineering of Water
  • Human Water > Water Governance
  • Science of Water > Water Quality
  相似文献   

10.
    
In this study, we analysed the factors affecting species richness and introduced species component patterns in native fish faunas of 30 streams of the Middle Basin of the Guadiana River. From a principal component analysis and a stepwise multiple regression analysis performed on a data matrix composed of ten hydrological and biotic variables, we showed that: (1) fish species richness increased with stream length and watershed area, (2) the number of native species in a stream declined as channelizations and river regulation (constructions of dams) are higher, whereas introduced species increased in the same way, (3) the two main negative factors affecting native ichthyofaunas affected dissimilar ecological areas: channelizations, which depend on land‐use intensity of floodplain, mainly occurred in lower reaches of streams, but construction of dams mainly took place in upper sections of rivers, (4) the length of the remaining well‐preserved reaches in a stream appeared to be the only factor accurately predicting native fish species richness, and (5) native fish faunas of small isolated streams are more vulnerable to habitat alteration than those of large streams. Both isolation and fragmentation of populations were recorded, so the conservation status of native and highly endemic fish fauna of the study area is extreme. Protection of the few still extant, well‐preserved small streams and upper reaches, habitat restoration of channeled areas, and inclusion of the need for native fish fauna conservation in long‐term public planning of water use become a priority. Fish communities appear to be a sensitive indicator of biological monitoring to assess environmental degradation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
    
Hydropower dams substantially modify lotic ecosystems. Most studies regarding their ecological impacts are based on large dams and provide little information about the far more abundant effects of small hydropower dams. Our aim was to characterize the ecological effects of a small hydropower dam and run‐of‐the‐river reservoir on the structure of benthic macroinvertebrate assemblages in the Pandeiros River located in the neotropical savanna of Brazil. We tested the hypothesis that benthic macroinvertebrate assemblages in sites directly affected by the dam and reservoir would show a different taxonomic structure compared with those in free‐flowing sites. We expected to find sensitive native species associated with the free‐flowing sites, whereas resistant and non‐native invasive taxa were expected in impounded sites. We also explored associations between the presence of native and non‐native invasive taxa to each habitat type. We found that the structure of benthic macroinvertebrate assemblages was significantly different between free‐flowing and impounded sites. Also, we found that the dam and reservoir facilitated colonization of non‐native invasive species (Corbicula fluminea and Melanoides tuberculata) because only in those sites they were found in high abundance, in contrast to the free‐flowing sites. Although the environmental conditions imposed by the impoundment altered the structure of benthic macroinvertebrate assemblages, the effects were limited to sites closest to the dam. Our results highlight the necessity of understanding physical habitat changes caused by the presence and management of run‐of‐the‐river dams and reservoirs.  相似文献   

12.
    
Although small and medium‐size dams are prevalent in North America, few studies have described their year‐round impacts on the thermal regime of rivers. The objective of this study was to quantify the impacts of two types of dams (run‐of‐river, storage with shallow reservoirs) on the thermal regime of rivers in eastern Canada. Thermal impacts of dams were assessed (i) for the open water period by evaluating their influence on the annual cycle in daily mean water temperature and residual variability and (ii) for the ice‐covered winter period by evaluating their influence on water temperature duration curves. Overall, results showed that the run‐of‐river dam (with limited storage capacity) did not have a significant effect on the thermal regime of the regulated river. At the two rivers regulated by storage dams with shallow reservoirs (mean depth < 6 m), the annual cycle in daily mean water temperature was significantly modified which led to warmer water temperatures in summer and autumn. From August to October, the monthly mean water temperature at rivers regulated by storage dams was 1.4 to 3.9°C warmer than at their respective reference sites. During the open water period, the two storage dams also reduced water temperature variability at a daily timescale while increased variability was observed in regulated rivers during the winter. Storage dams also had a warming effect during the winter and the winter median water temperature ranged between 1.0 and 2.1°C downstream of the two storage dams whereas water temperature remained stable and close to 0°C in unregulated rivers. The biological implications of the altered thermal regimes at rivers regulated by storage dams are discussed, in particular for salmonids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
    
New Zealand's Waikato River has had a short but intense history of development, primarily through land‐use change and flow regulation in the upper river, and in the lower river through flood control works, non‐native species invasion, and land‐use intensification. The river undergoes sharp transitions across montane‐flood plain‐coastal environments over a short distance and under similar climate. Together with specialized life‐history requirements of many native fish, these features provide valuable insights into large river ecology and management. Testing approaches to determine outcomes of water quality changes have highlighted the value of functional indicators over traditional biotic measures for monitoring anthropogenic impacts. Initiatives to enhance native fish populations in the lower river have included remediation of migration barriers to improve access to tributary habitat, enhancement of tidal spawning habitat, and traps and gates to limit movement of large pest fish into flood plain lakes for spawning. This example of a southern temperate large river system highlights the importance of recruitment habitat and connectivity for native fish communities dominated by migratory species. Their slender bodies provide opportunities to create semipermeable barriers that enable access to flood plain habitats while restricting larger invasive fish. Recent initiatives have increased momentum to restore the ecological health of this river, but the underpinning science to guide priority actions is often lacking, and there is limited monitoring over the scales and time frames required to evaluate effectiveness.  相似文献   

14.
长江中游通江湖泊的调蓄能力与整个区域的水安全密切相关。在对洞庭湖、鄱阳湖(下称“两湖”)调蓄机理探讨的基础上,揭示了两湖泊调蓄的临界状态及临界条件,分析了三峡水库蓄水期两湖泊调蓄能力的变化。研究结果表明:洞庭湖与鄱阳湖具有相同的调蓄机理,其调蓄能力变化受入湖流量和长江干流顶托的双重影响,湖泊调蓄过程表现为入湖与出湖水量的动态调整,湖泊调蓄量不断向0趋近。三峡水库运用后,两湖泊9—10月份调蓄能力下降明显,与2003—2007年相比,2008—2014年两湖汛后调蓄水量的减小更大。  相似文献   

15.
    
The aim of this study was to identify potentially invasive non‐native freshwater fishes in the middle reach of the Yarlung Zangbo River, Tibetan Plateau (China), using the Aquatic Species Invasiveness Screening Kit (AS‐ISK), as decision‐support tool. Based on independent evaluations of 24 non‐native freshwater fishes, receiver operating curve analysis identified a threshold score of ≥29 for distinguishing species likely to pose a high risk of becoming invasive from species likely to pose low‐to‐medium risk (<29) in the risk assessment area. Nine species were categorized as “high risk”: goldfish Carassius auratus, topmouth gudgeon Pseudorasbora parva, brook trout Salvelinus fontinalis, Oriental weatherfish (a.k.a. dojo gudgeon) Misgurnus anguillicaudatus, Siberian taimen Hucho taimen, common carp Cyprinus carpio, peled Coregonus peled, western mosquitofish Gambusia affinis, and Chinese rice fish Oryzias sinensis. The three lowest scoring species were Arctic cisco Coregonus autumnalis, Wuchang bream Megalobrama amblycephala, and Chinese ice fish Neosalanx taihuensis, which are unlikely to be invasive because they are unable to complete their life cycle in the risk assessment area. Climate change assessments scores increased or remained the same for warm‐water species and decreased for coldwater species. This study was the first application of AS‐ISK in western China, and the results suggest that AS‐ISK is a useful and valid tool for identifying potentially invasive risk aquatic species in China.  相似文献   

16.
17.
第三方机构进行移民后扶监测评估在移民后扶政策的落实上发挥了重要的监督、指导和参谋作用。但是,由于有的移民管理机构对监测评估结果缺乏足够的重视,对第三方提交的监测评估成果认知度较低,相关机构与第三方监测机构间缺乏明确的联动机制等问题的存在,导致了监测评估工作没有完全发挥出应有的功效,也在一定程度上削弱了后扶政策的效益。建议深入运用监测评估的资料和数据,建立和执行监评结果公告制度,抓好监评成果的整改落实和追踪问效制度,从而提高监评成果运用效率,消弭移民后扶政策实施中的不规范现象,推动后扶资金的节资增效。  相似文献   

18.
    
Remote sensing could facilitate efficient characterization of river systems for research and management purposes, provided that suitable image data are available and that the information derived therefrom is reliable. This study evaluated the utility of public domain multispectral images for estimating flow depths in a small stream and a larger gravel‐bed river, using data acquired through a task‐oriented consortium and the National Agricultural Imagery Program (NAIP). Field measurements were used to calibrate image‐derived quantities to observed depths and to assess depth retrieval accuracy. A band ratio‐based algorithm yielded coherent, hydraulically reasonable bathymetric maps for both field sites and three different types of image data. Applying a spatial filter reduced image noise and improved depth retrieval performance, with a strong calibration relationship (R2 = 0.68) and an observed (field‐surveyed) versus predicted (image‐derived) R2 of 0.6 for tasked images of the smaller stream. The NAIP data were less useful in this environment because of geo‐referencing errors and a coarser spatial resolution. On the larger river, NAIP‐derived bathymetry was more accurate, with an observed versus predicted R2 value of 0.64 for a compressed county mosaic easily accessible via the Internet. Comparison of remotely sensed bathymetric maps with field surveys indicated that although the locations of pools were determined accurately, their full depth could not be detected because of limited sensor radiometric resolution. Although a number of other constraints also must be considered, such as the need for local calibration data, depth retrieval from publicly available image data is feasible under appropriate conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
    
Imperilment of native fishes worldwide, and particularly in the American Southwest, has prompted management actions to protect and recover threatened populations. Implementation of management activities, however, often proceeds without clear understandings of ecological interactions between native fishes and other biotic and physical components of the environment. Using data obtained in a 19‐year, intensive monitoring effort across 288 km of the San Juan River in NM and UT, USA, we quantified relationships among large‐bodied fishes and longitudinal environmental gradients, tested for faunal breaks of fishes and habitat structure along the river's course, and assessed the response of fishes to mechanical removal of non‐native fishes and stocking of endangered fishes. Mesohabitat variation was not strongly linked to densities of large‐bodied fishes, but we found strong and temporally consistent longitudinal patterns of native and non‐native fishes: Native fish densities were highest upstream while non‐native fish densities where highest downstream, potentially driven by differential responses to temperature regimes. Two breaks in the longitudinal structure of large‐bodied fishes were identified and were associated with a man‐made barrier and changes in the width of the river's floodplain. While densities of common native fishes were relatively constant during the study, non‐native fish removal apparently reduced densities of one of two targeted species and densities of two endangered fishes increased as a result of stocking hatchery‐reared fish. Results of this study suggest that large‐bodied fishes of the San Juan River are responding to large‐scale longitudinal gradients rather than small‐scale habitat variation and management activities have altered densities of target species with limited responses by other fishes in the system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
以芦家河浅滩段为例,讨论了长江中游沙卵石河段坡陡流急碍航现象的治理对策。数学模型对多种整治方案的效果模拟表明,挖槽的横向、纵向尺度不同,其对坡陡流急缓解效率、上游水位下降程度方面存在明显差别。下游水位降幅也对开挖工程量、工程效果及上游水位下降具有重要影响。因此,坡陡流急河段的治理需要综合权衡上下游以及本地河床形态等多方面因素,实现系统整治。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号