首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper sets up a model for the valuation of traditional participating life insurance policies. These claims are characterized by their explicit interest rate guarantees and by various embedded option elements, such as bonus and surrender options. Owing to the structure of these contracts, the theory of contingent claims pricing is a particularly well-suited framework for the analysis of their valuation.The eventual benefits (or pay-offs) from the contracts considered crucially depend on the history of returns on the insurance company's assets during the contract period. This path-dependence prohibits the derivation of closed-form valuation formulas but we demonstrate that the dimensionality of the problem can be reduced to allow for the development and implementation of a finite difference algorithm for fast and accurate numerical evaluation of the contracts. We also demonstrate how the fundamental financial model can be extended to allow for mortality risk and we provide a wide range of numerical pricing results.  相似文献   

2.
The surrender option embedded in many life insurance products is a clause that allows policyholders to terminate the contract early. Pricing techniques based on the American Contingent Claim (ACC) theory are often used, though the actual policyholders' behavior is far from optimal. Inspired by many prepayment models for mortgage backed securities, this paper builds a Rational Expectation (RE) model describing the policyholders' behavior in lapsing the contract. A market model with stochastic interest rates is considered, and the pricing is carried out through numerical approximation of the corresponding two-space-dimensional parabolic partial differential equation. Extensive numerical experiments show the differences in terms of pricing and interest rate elasticity between the ACC and RE approaches as well as the sensitivity of the contract price with respect to changes in the policyholders' behavior.  相似文献   

3.
In this article we propose a lattice algorithm for pricing simple Ratchet equity-indexed annuities (EIAs) with early surrender risk and global minimum contract value when the asset value depends on the CIR++ stochastic interest rates. In addition we present an asymptotic expansion technique that permits us to obtain a first-order approximation formula for the price of simple Ratchet EIAs without early surrender risk and without a global minimum contract value. Numerical comparisons show the reliability of the proposed methods.  相似文献   

4.
This paper investigates option prices in an incomplete stochastic volatility model with correlation. In a general setting, we prove an ordering result which says that prices for European options with convex payoffs are decreasing in the market price of volatility risk.As an example, and as our main motivation, we investigate option pricing under the class of q-optimal pricing measures. The q-optimal pricing measure is related to the marginal utility indifference price of an agent with constant relative risk aversion. Using the ordering result, we prove comparison theorems between option prices under the minimal martingale, minimal entropy and variance-optimal pricing measures. If the Sharpe ratio is deterministic, the comparison collapses to the well known result that option prices computed under these three pricing measures are the same.As a concrete example, we specialize to a variant of the Hull-White or Heston model for which the Sharpe ratio is increasing in volatility. For this example we are able to deduce option prices are decreasing in the parameter q. Numerical solution of the pricing pde corroborates the theory and shows the magnitude of the differences in option price due to varying q.JEL Classification: D52, G13  相似文献   

5.
In this paper, we study the pricing problem of multi-exercise options under volume constraints. The volume constraint is modelled by an adapted process with values in the positive integers, which describes the maximal number of rights to be exercised at a given time. We derive a representation of the marginal value of an additional nth right as a standard single stopping problem with a modified cash-flow process. This representation then leads to a dual pricing formula, which generalizes a result by Meinshausen and Hambly (Math. Finance 14:557–583, 2004) from the standard multi-exercise option (with at most one right per time step) to general constraints. We also state an explicit Monte Carlo algorithm for computing confidence intervals for the price of multi-exercise options under volume constraints and present numerical results for the pricing of a swing contract in an electricity market.  相似文献   

6.
Interest rate guarantees are a typical contract feature in unit-linked-life insurance products. As the financial crisis of 2007/2008 has shown, these guarantees can be of substantial value for policyholders since they ensure that at least a minimum amount will be paid back even if the mutual fund value falls below a specific guaranteed level. However, from the insurance company’s view, these guarantees can be costly—especially in highly volatile markets—due to the required risk management measures which must be undertaken to secure the guarantees promised to the customers. Thus, the aim of this paper is to investigate whether customers really value these guarantees and if their willingness to pay (WTP) is sufficient to cover the guarantee costs. To elicit customer WTP, we use an online questionnaire and compare these results to the actual guarantee costs calculated with the Black and Scholes option pricing formula. One main finding is that even though most of the participants in the online questionnaire work in the financial industry, subjective prices are difficult to derive and are lower, on average, than the prices obtained using a financial pricing model. However, many participants are still willing to pay a substantially higher price.  相似文献   

7.
This paper focuses on pricing American put options under the double Heston model proposed by Christoffersen et al. By introducing an explicit exercise rule, we obtain the asymptotic expansion of the solution to the partial differential equation for pricing American put options. We calculate American option price by the sum of the European option price and the early exercise premium. The early exercise premium is calculated by the difference between the American and European option prices based on asymptotic expansions. The European option price is obtained by the efficient COS method. Based on the obtained American option price, the double Heston model is calibrated by minimizing the distance between model and market prices, which yields an optimization problem that is solved by a differential evolution algorithm combined with the Matlab function fmincon.m. Numerical results show that the pricing approach is fast and accurate. Empirical results show that the double Heston model has better performance in pricing short-maturity American put options and capturing the volatility term structure of American put options than the Heston model.  相似文献   

8.
Cochrane and Sa'a-Requejo (2000, Journal of Political Economy) proposed the good-deal price bounds for the European call option on an event that is not a traded asset, but is correlated with a traded asset that can be used as an approximate hedge. One remarkable feature of their model is that the return on an event process explicitly appears in the option price bounds formula, which offered a contrast with the standard option pricing model. We show that the good-deal option price bounds on a non-traded event are obtained as a closed-form formula, when the return on an event is governed by a mean reverting process.  相似文献   

9.
This article presents a pure exchange economy that extends Rubinstein [Bell J. Econ. Manage. Sci., 1976, 7, 407–425] to show how the jump-diffusion option pricing model of Black and Scholes [J. Political Econ., 1973, 81, 637–654] and Merton [J. Financ. Econ., 1976, 4, 125–144] evolves in gamma jumping economies. From empirical analysis and theoretical study, both the aggregate consumption and the stock price are unknown in determining jumping times. By using the pricing kernel, we determine both the aggregate consumption jump time and the stock price jump time from the equilibrium interest rate and CCAPM (Consumption Capital Asset Pricing Model). Our general jump-diffusion option pricing model gives an explicit formula for how the jump process and the jump times alter the pricing. This innovation with predictable jump times enhances our analysis of the expected stock return in equilibrium and of hedging jump risks for jump-diffusion economies.  相似文献   

10.
What is the catastrophe risk a life insurance company faces? What is the correct price of a catastrophe cover? During a review of the current standard model, due to Strickler, we found that this model has some serious shortcomings. We therefore present a new model for the pricing of catastrophe excess of loss cover (Cat XL). The new model for annual claim cost C is based on a compound Poisson process of catastrophe costs. To evaluate the distribution of the cost of each catastrophe, we use the Peaks Over Threshold model for the total number of lost lives in each catastrophe and the beta binomial model for the proportion of these corresponding to customers of the insurance company. To be able to estimate the parameters of the model, international and Swedish data were collected and compiled, listing accidents claiming at least twenty and four lives, respectively. Fitting the new model to data, we find the fit to be good. Finally we give the price of a Cat XL contract and perform a sensitivity analysis of how some of the parameters affect the expected value and standard deviation of the cost and thus the price.  相似文献   

11.
This paper considers the problem of pricing American options when the dynamics of the underlying are driven by both stochastic volatility following a square-root process as used by Heston [Rev. Financial Stud., 1993, 6, 327–343], and by a Poisson jump process as introduced by Merton [J. Financial Econ., 1976, 3, 125–144]. Probability arguments are invoked to find a representation of the solution in terms of expectations over the joint distribution of the underlying process. A combination of Fourier transform in the log stock price and Laplace transform in the volatility is then applied to find the transition probability density function of the underlying process. It turns out that the price is given by an integral dependent upon the early exercise surface, for which a corresponding integral equation is obtained. The solution generalizes in an intuitive way the structure of the solution to the corresponding European option pricing problem obtained by Scott [Math. Finance, 1997, 7(4), 413–426], but here in the case of a call option and constant interest rates.  相似文献   

12.
In this paper we study the pricing problem for a class of universal variable life (UVL) insurance products, using the idea of principle of equivalent utility. As the main features of UVL products we allow the (death) benefit to depend on certain indices or assets that are not necessarily tradable (e.g., pension plans), and we also consider the “multiple decrement” cases in which various status of the insured are allowed and the benefit varies in accordance with the status. Following the general theory of indifference pricing, we formulate the pricing problem as stochastic control problems, and derive the corresponding HJB equations for the value functions. In the case of exponential utilities, we show that the prices can be expressed explicitly in terms of the global, bounded solutions of a class of semilinear parabolic PDEs with exponential growth. In the case of general insurance models where multiple decrements and random time benefit payments are all allowed, we show that the price should be determined by the solutions to a system of HJB equations, each component corresponds to the value function of an optimization problem with the particular status of the insurer.  相似文献   

13.
The GARCH model has been very successful in capturing the serial correlation of asset return volatilities. As a result, applying the model to options pricing attracts a lot of attention. However, previous tree-based GARCH option pricing algorithms suffer from exponential running time, a cut-off maturity, inaccuracy, or some combination thereof. Specifically, this paper proves that the popular trinomial-tree option pricing algorithms of Ritchken and Trevor (Ritchken, P. and Trevor, R., Pricing options under generalized GARCH and stochastic volatility processes. J. Finance, , 54(1), 377–402.) and Cakici and Topyan (Cakici, N. and Topyan, K., The GARCH option pricing model: a lattice approach. J. Comput. Finance, , 3(4), 71–85.) explode exponentially when the number of partitions per day, n, exceeds a threshold determined by the GARCH parameters. Furthermore, when explosion happens, the tree cannot grow beyond a certain maturity date, making it unable to price derivatives with a longer maturity. As a result, the algorithms must be limited to using small n, which may have accuracy problems. The paper presents an alternative trinomial-tree GARCH option pricing algorithm. This algorithm provably does not have the short-maturity problem. Furthermore, the tree-size growth is guaranteed to be quadratic if n is less than a threshold easily determined by the model parameters. This level of efficiency makes the proposed algorithm practical. The surprising finding for the first time places a tree-based GARCH option pricing algorithm in the same complexity class as binomial trees under the Black–Scholes model. Extensive numerical evaluation is conducted to confirm the analytical results and the numerical accuracy of the proposed algorithm. Of independent interest is a simple and efficient technique to calculate the transition probabilities of a multinomial tree using generating functions.  相似文献   

14.
In this paper we propose a general derivative pricing framework that employs decoupled time-changed (DTC) Lévy processes to model the underlying assets of contingent claims. A DTC Lévy process is a generalized time-changed Lévy process whose continuous and pure jump parts are allowed to follow separate random time scalings; we devise the martingale structure for a DTC Lévy-driven asset and revisit many popular models which fall under this framework. Postulating different time changes for the underlying Lévy decomposition allows the introduction of asset price models consistent with the assumption of a correlated pair of continuous and jump market activity rates; we study one illustrative DTC model of this kind based on the so-called Wishart process. The theory we develop is applied to the problem of pricing not only claims that depend on the price or the volatility of an underlying asset, but also more sophisticated derivatives whose payoffs rely on the joint performance of these two financial variables, such as the target volatility option. We solve the pricing problem through a Fourier-inversion method. Numerical analyses validating our techniques are provided. In particular, we present some evidence that correlating the activity rates could be beneficial for modeling the volatility skew dynamics.  相似文献   

15.
Lin Zhao 《Quantitative Finance》2017,17(11):1759-1782
We apply utility indifference pricing to solve a contingent claim problem, valuing a connected pair of gas fields where the underlying process is not standard Geometric Brownian Motion and the assumption of complete markets is not fulfilled. First, empirical data are often characterized by time-varying volatility and fat tails; therefore, we use Gaussian generalized autoregressive score (GAS) and GARCH models, extending them to Student’s t-GARCH and t-GAS. Second, an important risk (reservoir size) is not hedgeable. As a result, markets are incomplete which makes preference free pricing impossible and thus standard option pricing methodology inapplicable. Therefore, we parametrize the investor’s risk preference and use utility indifference pricing techniques. We use Least Squares Monte Carlo simulations as a dimension reduction technique in solving the resulting stochastic dynamic programming problems. Moreover, an investor often only has an approximate idea of the true probabilistic model underlying variables, making model ambiguity a relevant problem. We show empirically how model ambiguity affects project values, and importantly, how option values change as model ambiguity gets resolved in later phases of the projects. We show that traditional valuation approaches will consistently underestimate the value of project flexibility and in general lead to overly conservative investment decisions in the presence of time-dependent stochastic structures.  相似文献   

16.
《Journal of Banking & Finance》1999,23(11):1691-1706
We propose a multiperiod deposit insurance pricing model that simultaneously incorporates the capital standard and the possibility of forbearance. The model employs the recently developed GARCH option pricing technique in determining the deposit insurance value. Our model offers two distinctive advantages. First, it explicitly considers the implications of the strict enforcement on capital standard as stipulated in FDIC Improvement Act of 1991. Second, the use of the GARCH model allows us to capture many robust features exhibited by financial asset returns. By the GARCH option pricing theory, the value of a contingent claim is a function of the asset risk premium. This unique feature is found to be prominent in determining the bank's deposit insurance value. We also examine the effects of capital forbearance and moral hazard behavior in this multiperiod deposit insurance setting.  相似文献   

17.
The purpose of the article is to apply contingent claim theory to the valuation of the type of participating life insurance policies commonly sold in the UK. The article extends the techniques developed by Haberman, Ballotta, and Wang (2003) to allow for the default option. The default option is a feature of the design of these policies, which recognizes that the insurance company's liability is limited by the market value of the reference portfolio of assets underlying the policies that have been sold. The valuation approach is based on the classical contingent claim pricing “machinery,” underpinned by Monte Carlo techniques for the computation of fair values. The article addresses in particular the issue of a fair contract design for a complex type of participating policy and analyzes in detail the feasible set of policy design parameters that would lead to a fair contract and the trade‐offs between these parameters.  相似文献   

18.
In the Black–Merton–Scholes framework, the price of an underlying asset is assumed to follow a pure diffusion process. No-arbitrage theory shows that the price of an option contract written on the asset can be determined by solving a linear diffusion equation with variable coefficients. Applying the separating variable method, the problem of option pricing under state-dependent deterministic volatility can be transformed into a Schrödinger spectral problem, which has been well studied in quantum mechanics. With Weyl–Titchmarsh theory, we are able to determine the boundary condition and the nature of the eigenvalues and eigenfunctions. The solution can be written analytically in a Stieltjes integral. A few case studies demonstrate that a new analytical option pricing formula can be produced with our method.  相似文献   

19.
We apply a new numerical method, the singular Fourier–Padé (SFP) method invented by Driscoll and Fornberg [Numer. Algorithms, 2001, 26, 77–92; The Gibbs Phenomenon in Various Representations and Applications, 2011], to price European-type options in Lévy and affine processes. The motivation behind this application is to reduce the inefficiency of current Fourier techniques when they are used to approximate piecewise continuous (non-smooth) probability density functions. When techniques such as fast Fourier transforms and Fourier series are applied to price and hedge options with non-smooth probability density functions, they cause the Gibbs phenomenon; accordingly, the techniques converge slowly for density functions with jumps in value or derivatives. This seriously adversely affects the efficiency and accuracy of these techniques. In this paper, we derive pricing formulae and their option Greeks using the SFP method to resolve the Gibbs phenomenon and restore the global spectral convergence rate. Moreover, we show that our method requires a small number of terms to yield fast error convergence, and it is able to accurately price any European-type option deep in/out of the money and with very long/short maturities. Furthermore, we conduct an error-bound analysis of the SFP method in option pricing. This new method performs favourably in numerical experiments compared with existing techniques.  相似文献   

20.
The paper aims to study the pricing issue of deposit insurance with explicit consideration of bankruptcy costs and closure policies. Full coverage from deposit insurance is imposed by many regulators to stabilize the banking system in the current financial crisis, despite of the potential moral hazard problems. We argue that bankruptcy cost is an important factor in pricing deposit insurance, especially when the insured institution is insolvent. Applying the isomorphic relationship between deposit insurance and put option, we first derive a closed-form solution for the pricing model with bankruptcy costs and closure policies. Then, we modify the barrier option approach to price the deposit insurance in which the bankruptcy cost is set as a function of asset return volatility and more realistic closure policies considering possible forbearance can be accounted for. The properties of the models are supported by numerical simulations and are consistent with the risk-based pricing scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号