共查询到5条相似文献,搜索用时 0 毫秒
1.
《International Journal of Forecasting》2020,36(3):873-891
In predicting conditional covariance matrices of financial portfolios, practitioners are required to choose among several alternative options, facing a number of different sources of uncertainty. A first source is related to the frequency at which prices are observed, either daily or intradaily. Using prices sampled at higher frequency inevitably poses additional sources of uncertainty related to the selection of the optimal intradaily sampling frequency and to the construction of the best realized estimator. Likewise, the choices of model structure and estimation method also have a critical role. In order to alleviate the impact of these sources of uncertainty, we propose a forecast combination strategy based on the Model Confidence Set [MCS] to adaptively identify the set of most accurate predictors. The combined predictor is shown to achieve superior performance with respect to the whole model universe plus three additional competitors, independently of the MCS or portfolio settings. 相似文献
2.
3.
《International Journal of Forecasting》2019,35(4):1318-1331
This paper proposes a cluster HAR-type model that adopts the hierarchical clustering technique to form the cascade of heterogeneous volatility components. In contrast to the conventional HAR-type models, the proposed cluster models are based on the relevant lagged volatilities selected by the cluster group Lasso. Our simulation evidence suggests that the cluster group Lasso dominates other alternatives in terms of variable screening and that the cluster HAR serves as the top performer in forecasting the future realized volatility. The forecasting superiority of the cluster models are also demonstrated in an empirical application where the highest forecasting accuracy tends to be achieved by separating the jumps from the continuous sample path volatility process. 相似文献
4.
In this paper, we introduce a threshold stochastic volatility model with explanatory variables. The Bayesian method is considered in estimating the parameters of the proposed model via the Markov chain Monte Carlo (MCMC) algorithm. Gibbs sampling and Metropolis–Hastings sampling methods are used for drawing the posterior samples of the parameters and the latent variables. In the simulation study, the accuracy of the MCMC algorithm, the sensitivity of the algorithm for model assumptions, and the robustness of the posterior distribution under different priors are considered. Simulation results indicate that our MCMC algorithm converges fast and that the posterior distribution is robust under different priors and model assumptions. A real data example was analyzed to explain the asymmetric behavior of stock markets. 相似文献
5.
Forecasts of key interest rates set by central banks are of paramount concern for investors and policy makers. Recently it has been shown that forecasts of the federal funds rate target, the most anticipated indicator of the Federal Reserve Bank's monetary policy stance, can be improved considerably when its evolution is modeled as a marked point process (MPP). This is due to the fact that target changes occur in discrete time with discrete increments, have an autoregressive nature and are usually in the same direction. We propose a model which is able to account for these dynamic features of the data. In particular, we combine Hamilton and Jordà's [2002. A model for the federal funds rate target. Journal of Political Economy 110(5), 1135–1167] autoregressive conditional hazard (ACH) and Russell and Engle's [2005. A discrete-state continuous-time model of financial transactions prices and times: the autoregressive conditional multinomial-autoregressive conditional duration model. Journal of Business and Economic Statistics 23(2), 166 – 180] autoregressive conditional multinomial (ACM) model. The paper also puts forth a methodology to evaluate probability function forecasts of MPP models. By improving goodness of fit and point forecasts of the target, the ACH–ACM qualifies as a sensible modeling framework. Furthermore, our results show that MPP models deliver useful probability function forecasts at short and medium term horizons. 相似文献