共查询到20条相似文献,搜索用时 0 毫秒
1.
Spyros Makridakis Evangelos Spiliotis Vassilios Assimakopoulos 《International Journal of Forecasting》2018,34(4):802-808
The M4 competition is the continuation of three previous competitions started more than 45 years ago whose purpose was to learn how to improve forecasting accuracy, and how such learning can be applied to advance the theory and practice of forecasting. The purpose of M4 was to replicate the results of the previous ones and extend them into three directions: First significantly increase the number of series, second include Machine Learning (ML) forecasting methods, and third evaluate both point forecasts and prediction intervals. The five major findings of the M4 Competitions are: 1. Out Of the 17 most accurate methods, 12 were “combinations” of mostly statistical approaches. 2. The biggest surprise was a “hybrid” approach that utilized both statistical and ML features. This method’s average sMAPE was close to 10% more accurate than the combination benchmark used to compare the submitted methods. 3. The second most accurate method was a combination of seven statistical methods and one ML one, with the weights for the averaging being calculated by a ML algorithm that was trained to minimize the forecasting. 4. The two most accurate methods also achieved an amazing success in specifying the 95% prediction intervals correctly. 5. The six pure ML methods performed poorly, with none of them being more accurate than the combination benchmark and only one being more accurate than Naïve2. This paper presents some initial results of M4, its major findings and a logical conclusion. Finally, it outlines what the authors consider to be the way forward for the field of forecasting. 相似文献
2.
We review the results of six forecasting competitions based on the online data science platform Kaggle, which have been largely overlooked by the forecasting community. In contrast to the M competitions, the competitions reviewed in this study feature daily and weekly time series with exogenous variables, business hierarchy information, or both. Furthermore, the Kaggle data sets all exhibit higher entropy than the M3 and M4 competitions, and they are intermittent.In this review, we confirm the conclusion of the M4 competition that ensemble models using cross-learning tend to outperform local time series models and that gradient boosted decision trees and neural networks are strong forecast methods. Moreover, we present insights regarding the use of external information and validation strategies, and discuss the impacts of data characteristics on the choice of statistics or machine learning methods. Based on these insights, we construct nine ex-ante hypotheses for the outcome of the M5 competition to allow empirical validation of our findings. 相似文献
3.
《International Journal of Forecasting》2022,38(4):1346-1364
In this study, we present the results of the M5 “Accuracy” competition, which was the first of two parallel challenges in the latest M competition with the aim of advancing the theory and practice of forecasting. The main objective in the M5 “Accuracy” competition was to accurately predict 42,840 time series representing the hierarchical unit sales for the largest retail company in the world by revenue, Walmart. The competition required the submission of 30,490 point forecasts for the lowest cross-sectional aggregation level of the data, which could then be summed up accordingly to estimate forecasts for the remaining upward levels. We provide details of the implementation of the M5 “Accuracy” challenge, as well as the results and best performing methods, and summarize the major findings and conclusions. Finally, we discuss the implications of these findings and suggest directions for future research. 相似文献
4.
《International Journal of Forecasting》2022,38(4):1365-1385
This paper describes the M5 “Uncertainty” competition, the second of two parallel challenges of the latest M competition, aiming to advance the theory and practice of forecasting. The particular objective of the M5 “Uncertainty” competition was to accurately forecast the uncertainty distributions of the realized values of 42,840 time series that represent the hierarchical unit sales of the largest retail company in the world by revenue, Walmart. To do so, the competition required the prediction of nine different quantiles (0.005, 0.025, 0.165, 0.250, 0.500, 0.750, 0.835, 0.975, and 0.995), that can sufficiently describe the complete distributions of future sales. The paper provides details on the implementation and execution of the M5 “Uncertainty” competition, presents its results and the top-performing methods, and summarizes its major findings and conclusions. Finally, it discusses the implications of its findings and suggests directions for future research. 相似文献
5.
《International Journal of Forecasting》2020,36(1):7-14
Forecasting competitions are now so widespread that it is often forgotten how controversial they were when first held, and how influential they have been over the years. I briefly review the history of forecasting competitions, and discuss what we have learned about their design and implementation, and what they can tell us about forecasting. I also provide a few suggestions for potential future competitions, and for research about forecasting based on competitions. 相似文献
6.
《International Journal of Forecasting》2020,36(1):37-53
Forecasters typically evaluate the performances of new forecasting methods by exploiting data from past forecasting competitions. Over the years, numerous studies have based their conclusions on such datasets, with mis-performing methods being unlikely to receive any further attention. However, it has been reported that these datasets might not be indicative, as they display many limitations. Since forecasting research is driven somewhat by data from forecasting competitions, it becomes vital to determine whether they are indeed representative of the reality or whether forecasters tend to over-fit their methods on a random sample of series. This paper uses the data from M4 as proportionate to the real world and compares its properties with those of past datasets commonly used in the literature as benchmarks in order to provide evidence on that question. The results show that many popular benchmarks of the past may indeed deviate from reality, and ways forward are discussed in response. 相似文献
7.
《International Journal of Forecasting》2020,36(1):98-104
Several researchers (Armstrong, 2001; Clemen, 1989; Makridakis and Winkler, 1983) have shown empirically that combination-based forecasting methods are very effective in real world settings. This paper discusses a combination-based forecasting approach that was used successfully in the M4 competition. The proposed approach was evaluated on a set of 100K time series across multiple domain areas with varied frequencies. The point forecasts submitted finished fourth based on the overall weighted average (OWA) error measure and second based on the symmetric mean absolute percent error (sMAPE). 相似文献
8.
《International Journal of Forecasting》2022,38(4):1325-1336
The M5 competition follows the previous four M competitions, whose purpose is to learn from empirical evidence how to improve forecasting performance and advance the theory and practice of forecasting. M5 focused on a retail sales forecasting application with the objective to produce the most accurate point forecasts for 42,840 time series that represent the hierarchical unit sales of the largest retail company in the world, Walmart, as well as to provide the most accurate estimates of the uncertainty of these forecasts. Hence, the competition consisted of two parallel challenges, namely the Accuracy and Uncertainty forecasting competitions. M5 extended the results of the previous M competitions by: (a) significantly expanding the number of participating methods, especially those in the category of machine learning; (b) evaluating the performance of the uncertainty distribution along with point forecast accuracy; (c) including exogenous/explanatory variables in addition to the time series data; (d) using grouped, correlated time series; and (e) focusing on series that display intermittency. This paper describes the background, organization, and implementations of the competition, and it presents the data used and their characteristics. Consequently, it serves as introductory material to the results of the two forecasting challenges to facilitate their understanding. 相似文献
9.
《International Journal of Forecasting》2022,38(4):1500-1506
The main objective of the M5 competition, which focused on forecasting the hierarchical unit sales of Walmart, was to evaluate the accuracy and uncertainty of forecasting methods in the field to identify best practices and highlight their practical implications. However, can the findings of the M5 competition be generalized and exploited by retail firms to better support their decisions and operation? This depends on the extent to which M5 data is sufficiently similar to unit sales data of retailers operating in different regions selling different product types and considering different marketing strategies. To answer this question, we analyze the characteristics of the M5 time series and compare them with those of two grocery retailers, namely Corporación Favorita and a major Greek supermarket chain, using feature spaces. Our results suggest only minor discrepancies between the examined data sets, supporting the representativeness of the M5 data. 相似文献
10.
11.
Paulo J.L. AdeodatoAuthor Vitae Adrian L. ArnaudAuthor VitaeGermano C. VasconcelosAuthor Vitae Rodrigo C.L.V. CunhaAuthor Vitae Domingos S.M.P. MonteiroAuthor Vitae 《International Journal of Forecasting》2011,27(3):661
This work describes an award winning approach for solving the NN3 Forecasting Competition problem, focusing on the sound experimental validation of its main innovative feature. The NN3 forecasting task consisted of predicting 18 future values of 111 short monthly time series. The main feature of the approach was the use of the median for combining the forecasts of an ensemble of 15 MLPs to predict each time series. Experimental comparison to a single MLP shows that the ensemble increases the performance accuracy for multiple-step ahead forecasting. This system performed well on the withheld data, having finished as the second best solution of the competition with an SMAPE of 16.17%. 相似文献
12.
《International Journal of Forecasting》2022,38(4):1426-1433
Deep neural networks and gradient boosted tree models have swept across the field of machine learning over the past decade, producing across-the-board advances in performance. The ability of these methods to capture feature interactions and nonlinearities makes them exceptionally powerful and, at the same time, prone to overfitting, leakage, and a lack of generalization in domains with target non-stationarity and collinearity, such as time-series forecasting. We offer guidance to address these difficulties and provide a framework that maximizes the chances of predictions that generalize well and deliver state-of-the-art performance. The techniques we offer for cross-validation, augmentation, and parameter tuning have been used to win several major time-series forecasting competitions—including the M5 Forecasting Uncertainty competition and the Kaggle COVID19 Forecasting series—and, with the proper theoretical grounding, constitute the current best practices in time-series forecasting. 相似文献
13.
Scott A. Brave Charles Gascon William Kluender Thomas Walstrum 《International Journal of Forecasting》2021,37(3):1261-1275
US payroll employment data come from a survey and are subject to revisions. While revisions are generally small at the national level, they can be large enough at the state level to alter assessments of current economic conditions. Users must therefore exercise caution in interpreting state employment data until they are “benchmarked” against administrative data 5–16 months after the reference period. This article develops a state-space model that predicts benchmarked state employment data in real time. The model has two distinct features: (1) an explicit model of the data revision process and (2) a dynamic factor model that incorporates real-time information from other state-level labor market indicators. We find that the model reduces the average size of benchmark revisions by about 11 percent. When we optimally average the model’s predictions with those of existing models, the model reduces the average size of the revisions by about 14 percent. 相似文献
14.
Mathieu David Mazorra Aguiar Luis Philippe Lauret 《International Journal of Forecasting》2018,34(3):529-547
Accurate solar forecasts are necessary to improve the integration of solar renewables into the energy grid. In recent years, numerous methods have been developed for predicting the solar irradiance or the output of solar renewables. By definition, a forecast is uncertain. Thus, the models developed predict the mean and the associated uncertainty. Comparisons are therefore necessary and useful for assessing the skill and accuracy of these new methods in the field of solar energy.The aim of this paper is to present a comparison of various models that provide probabilistic forecasts of the solar irradiance within a very strict framework. Indeed, we consider focusing on intraday forecasts, with lead times ranging from 1 to 6 h. The models selected use only endogenous inputs for generating the forecasts. In other words, the only inputs of the models are the past solar irradiance data. In this context, the most common way of generating the forecasts is to combine point forecasting methods with probabilistic approaches in order to provide prediction intervals for the solar irradiance forecasts. For this task, we selected from the literature three point forecasting models (recursive autoregressive and moving average (ARMA), coupled autoregressive and dynamical system (CARDS), and neural network (NN)), and seven methods for assessing the distribution of their error (linear model in quantile regression (LMQR), weighted quantile regression (WQR), quantile regression neural network (QRNN), recursive generalized autoregressive conditional heteroskedasticity (GARCHrls), sieve bootstrap (SB), quantile regression forest (QRF), and gradient boosting decision trees (GBDT)), leading to a comparison of 20 combinations of models.None of the model combinations clearly outperform the others; nevertheless, some trends emerge from the comparison. First, the use of the clear sky index ensures the accuracy of the forecasts. This derived parameter permits time series to be deseasonalized with missing data, and is also a good explanatory variable of the distribution of the forecasting errors. Second, regardless of the point forecasting method used, linear models in quantile regression, weighted quantile regression and gradient boosting decision trees are able to forecast the prediction intervals accurately. 相似文献
15.
《International Journal of Forecasting》2020,36(2):588-606
Many regions on earth face daily limitations in the quantity and quality of the water resources available. As a result, it is necessary to implement reliable methodologies for water consumption forecasting that will enable the better management and planning of water resources. This research analyses, for the first time, a large database containing data from 2 million water meters in 274 unique postal codes, in one of the most densely populated areas of Europe, which faces issues of droughts and overconsumption in the hot summer months. Using the R programming language, we built and tested three alternative forecasting methodologies, employing univariate forecasting techniques including a machine-learning algorithm, with very promising results. 相似文献
16.
《International Journal of Forecasting》2020,36(1):121-128
We participated in the M4 competition for time series forecasting and here describe our methods for forecasting daily time series. We used an ensemble of five statistical forecasting methods and a method that we refer to as the correlator. Our retrospective analysis using the ground truth values published by the M4 organisers after the competition demonstrates that the correlator was responsible for most of our gains over the naïve constant forecasting method. We identify data leakage as one reason for its success, due partly to test data selected from different time intervals, and partly to quality issues with the original time series. We suggest that future forecasting competitions should provide actual dates for the time series so that some of these leakages could be avoided by participants. 相似文献
17.
《International Journal of Forecasting》2022,38(2):489-504
Researchers from various scientific disciplines have attempted to forecast the spread of coronavirus disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we combine all these approaches, we obtain the Network Inference-based Prediction Algorithm (NIPA). In this paper, we analyse a diverse set of COVID-19 forecast algorithms, including several modifications of NIPA. Among the algorithms that we evaluated, the original NIPA performed best at forecasting the spread of COVID-19 in Hubei, China and in the Netherlands. In particular, we show that network-based forecasting is superior to any other forecasting algorithm. 相似文献
18.
《International Journal of Forecasting》2014,30(2):375-381
We sum up the methodology of the team tololo for the Global Energy Forecasting Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale model that combines three components. The first component was a long term trend estimated by means of non-parametric smoothing. The second was a medium term component describing the sensitivity of the electricity demand to the temperature at each time step. We use a generalized additive model to fit this component, using calendar information as well. Finally, a short term component models local behaviours. As the factors that drive this component are unknown, we use a random forest model to estimate it. 相似文献
19.
20.
《International Journal of Forecasting》2022,38(2):453-466
We have been publishing real-time forecasts of confirmed cases and deaths from coronavirus disease 2019 (COVID-19) since mid-March 2020 (published at www.doornik.com/COVID-19). These forecasts are short-term statistical extrapolations of past and current data. They assume that the underlying trend is informative regarding short-term developments but without requiring other assumptions about how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is spreading, or whether preventative policies are effective. Thus, they are complementary to the forecasts obtained from epidemiological models.The forecasts are based on extracting trends from windows of data using machine learning and then computing the forecasts by applying some constraints to the flexible extracted trend. These methods have been applied previously to various other time series data and they performed well. They have also proved effective in the COVID-19 setting where they provided better forecasts than some epidemiological models in the earlier stages of the pandemic. 相似文献