共查询到9条相似文献,搜索用时 15 毫秒
1.
We present a new model to decompose total daily return volatility into high-frequency-based open-to-close volatility and a time-varying scaling factor. We use score-driven dynamics based on fat-tailed distributions to obtain robust volatility dynamics. Applying our new model to a 2001–2018 sample of individual stocks and stock indices, we find substantial in-sample variation of the daytime-to-total volatility ratio over time. We apply the model to out-of-sample forecasting, evaluated in terms of Value-at-Risk and Expected Shortfall. Models with a non-constant volatility ratio typically perform best, particularly in terms of Value-at-Risk. Our new model performs especially well during turbulent times. All results are generally stronger for individual stocks than for index returns. 相似文献
2.
《International Journal of Forecasting》2019,35(4):1273-1287
We use numerous high-frequency transaction data sets to evaluate the forecasting performances of several dynamic ordinal-response time series models with generalized autoregressive conditional heteroscedasticity (GARCH). The specifications account for three components: leverage effects, in-mean effects and moving average error terms. We estimate the model parameters by developing Markov chain Monte Carlo algorithms. Our empirical analysis shows that the proposed ordinal-response GARCH models achieve better point and density forecasts than standard benchmarks. 相似文献
3.
Bayesian modification indices are presented that provide information for the process of model evaluation and model modification. These indices can be used to investigate the improvement in a model if fixed parameters are re-specified as free parameters. The indices can be seen as a Bayesian analogue to the modification indices commonly used in a frequentist framework. The aim is to provide diagnostic information for multi-parameter models where the number of possible model violations and the related number of alternative models is too large to render estimation of each alternative practical. As an example, the method is applied to an item response theory (IRT) model, that is, to the two-parameter model. The method is used to investigate differential item functioning and violations of the assumption of local independence. 相似文献
4.
This paper proposes two types of stochastic correlation structures for Multivariate Stochastic Volatility (MSV) models, namely the constant correlation (CC) MSV and dynamic correlation (DC) MSV models, from which the stochastic covariance structures can easily be obtained. Both structures can be used for purposes of determining optimal portfolio and risk management strategies through the use of correlation matrices, and for calculating Value-at-Risk (VaR) forecasts and optimal capital charges under the Basel Accord through the use of covariance matrices. A technique is developed to estimate the DC MSV model using the Markov Chain Monte Carlo (MCMC) procedure, and simulated data show that the estimation method works well. Various multivariate conditional volatility and MSV models are compared via simulation, including an evaluation of alternative VaR estimators. The DC MSV model is also estimated using three sets of empirical data, namely Nikkei 225 Index, Hang Seng Index and Straits Times Index returns, and significant dynamic correlations are found. The Dynamic Conditional Correlation (DCC) model is also estimated, and is found to be far less sensitive to the covariation in the shocks to the indexes. The correlation process for the DCC model also appears to have a unit root, and hence constant conditional correlations in the long run. In contrast, the estimates arising from the DC MSV model indicate that the dynamic correlation process is stationary. 相似文献
5.
We develop a Bayesian median autoregressive (BayesMAR) model for time series forecasting. The proposed method utilizes time-varying quantile regression at the median, favorably inheriting the robustness of median regression in contrast to the widely used mean-based methods. Motivated by a working Laplace likelihood approach in Bayesian quantile regression, BayesMAR adopts a parametric model bearing the same structure as autoregressive models by altering the Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling strategy for time series forecasting. We estimate model parameters by Markov chain Monte Carlo. Bayesian model averaging is used to account for model uncertainty, including the uncertainty in the autoregressive order, in addition to a Bayesian model selection approach. The proposed methods are illustrated using simulations and real data applications. An application to U.S. macroeconomic data forecasting shows that BayesMAR leads to favorable and often superior predictive performance compared to the selected mean-based alternatives under various loss functions that encompass both point and probabilistic forecasts. The proposed methods are generic and can be used to complement a rich class of methods that build on autoregressive models. 相似文献
6.
Pair trading is a statistical arbitrage strategy used on similar assets with dissimilar valuations. We utilize smooth transition heteroskedastic models with a second-order logistic function to generate trading entry and exit signals and suggest two pair trading strategies: the first uses the upper and lower threshold values in the proposed model as trading entry and exit signals, while the second strategy instead takes one-step-ahead quantile forecasts obtained from the same model. We employ Bayesian Markov chain Monte Carlo sampling methods for updating the estimates and quantile forecasts. As an illustration, we conduct a simulation study and empirical analysis of the daily stock returns of 36 stocks from U.S. stock markets. We use the minimum square distance method to select ten stock pairs, choose additional five pairs consisting of two companies in the same industrial sector, and then finally consider pair trading profits for two out-of-sample periods in 2014 within a six-month time frame as well as for the entire year. The proposed strategies yield average annualized returns of at least 35.5% without a transaction cost and at least 18.4% with a transaction cost. 相似文献
7.
Model specification for state space models is a difficult task as one has to decide which components to include in the model and to specify whether these components are fixed or time-varying. To this aim a new model space MCMC method is developed in this paper. It is based on extending the Bayesian variable selection approach which is usually applied to variable selection in regression models to state space models. For non-Gaussian state space models stochastic model search MCMC makes use of auxiliary mixture sampling. We focus on structural time series models including seasonal components, trend or intervention. The method is applied to various well-known time series. 相似文献
8.
Alexandra M. Schmidt Ajax R. B. Moreira Steven M. Helfand Thais C. O. Fonseca 《Journal of Productivity Analysis》2009,31(2):101-112
This paper analyzes the productivity of farms across 370 municipalities in the Center-West region of Brazil. A stochastic
frontier model with a latent spatial structure is proposed to account for possible unknown geographical variation of the outputs.
The paper compares versions of the model that include the latent spatial effect in the mean of output or as a variable that
conditions the distribution of inefficiency, include or not observed municipal variables, and specify independent normal or
conditional autoregressive priors for the spatial effects. The Bayesian paradigm is used to estimate the proposed models.
As the resultant posterior distributions do not have a closed form, stochastic simulation techniques are used to obtain samples
from them. Two model comparison criteria provide support for including the latent spatial effects, even after considering
covariates at the municipal level. Models that ignore the latent spatial effects produce significantly different rankings
of inefficiencies across agents.
相似文献
Alexandra M. SchmidtEmail: URL: www.dme.ufrj.br/∼alex |
9.
This paper is concerned with the Bayesian estimation and comparison of flexible, high dimensional multivariate time series models with time varying correlations. The model proposed and considered here combines features of the classical factor model with that of the heavy tailed univariate stochastic volatility model. A unified analysis of the model, and its special cases, is developed that encompasses estimation, filtering and model choice. The centerpieces of the estimation algorithm (which relies on MCMC methods) are: (1) a reduced blocking scheme for sampling the free elements of the loading matrix and the factors and (2) a special method for sampling the parameters of the univariate SV process. The resulting algorithm is scalable in terms of series and factors and simulation-efficient. Methods for estimating the log-likelihood function and the filtered values of the time-varying volatilities and correlations are also provided. The performance and effectiveness of the inferential methods are extensively tested using simulated data where models up to 50 dimensions and 688 parameters are fit and studied. The performance of our model, in relation to various multivariate GARCH models, is also evaluated using a real data set of weekly returns on a set of 10 international stock indices. We consider the performance along two dimensions: the ability to correctly estimate the conditional covariance matrix of future returns and the unconditional and conditional coverage of the 5% and 1% value-at-risk (VaR) measures of four pre-defined portfolios. 相似文献