共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Forecasting》2020,36(3):1181-1191
Probabilistic forecasting, i.e., estimating a time series’ future probability distribution given its past, is a key enabler for optimizing business processes. In retail businesses, for example, probabilistic demand forecasts are crucial for having the right inventory available at the right time and in the right place. This paper proposes DeepAR, a methodology for producing accurate probabilistic forecasts, based on training an autoregressive recurrent neural network model on a large number of related time series. We demonstrate how the application of deep learning techniques to forecasting can overcome many of the challenges that are faced by widely-used classical approaches to the problem. By means of extensive empirical evaluations on several real-world forecasting datasets, we show that our methodology produces more accurate forecasts than other state-of-the-art methods, while requiring minimal manual work. 相似文献
2.
We describe and employ a Bayesian posterior simulator for fitting a high-dimensional system of ordinal or count outcome equations. The model is then applied to describe the multiple site recreation demands of individual agents, and we argue that our approach provides advantages relative to existing methods commonly applied in this area. In particular, our model flexibly adjusts to match observed frequencies in trip outcomes, permits a flexible correlation pattern among the sites visited by individuals, and the posterior simulator for fitting this model is relatively easy to implement in practice. We also describe how the posterior simulations produced from the model can be used to conduct a variety of counterfactual experiments, including predicting behavioral changes and describing welfare implications resulting from shifts in exogenous demographic and site characteristics. We illustrate our method using data from the Iowa Lakes Project by modeling the visitation patterns of individuals to a set of twenty-nine large Iowa lakes. Consistent with previous findings in the literature, we see strong evidence that own and cross-price effects on trip demand are negative and positive, respectively, that higher income increases the likelihood of visiting most sites, and that a commonly used indicator of water quality, Secchi transparency, is positively correlated with the number of trips taken. In addition, the correlation structure among the errors reveals a complex pattern in which unobserved factors affecting trip demand are generally (though not strictly) positively correlated across sites. The flexibility and richness with which we are able to characterize the demand system provides a solid platform for counterfactual analysis, where we find significant behavioral and welfare effects from changes in site availability, water quality, and travel costs. 相似文献
3.
《International Journal of Forecasting》2022,38(4):1460-1467
We present our solution for the M5 Uncertainty competition. Our solution ranked sixth out of 909 submissions across all hierarchical levels and ranked first for prediction at the finest level of granularity (product-store sales, i.e. SKUs). The model combines a multi-stage state-space model and Monte Carlo simulations to generate the forecasting scenarios (trajectories). Observed sales are modelled with negative binomial distributions to represent discrete over-dispersed sales. Seasonal factors are handcrafted and modelled with linear coefficients that are calculated at the store-department level. 相似文献
4.
《International Journal of Forecasting》2019,35(4):1389-1399
The Global Energy Forecasting Competition 2017 (GEFCom2017) attracted more than 300 students and professionals from over 30 countries for solving hierarchical probabilistic load forecasting problems. Of the series of global energy forecasting competitions that have been held, GEFCom2017 is the most challenging one to date: the first one to have a qualifying match, the first one to use hierarchical data with more than two levels, the first one to allow the usage of external data sources, the first one to ask for real-time ex-ante forecasts, and the longest one. This paper introduces the qualifying and final matches of GEFCom2017, summarizes the top-ranked methods, publishes the data used in the competition, and presents several reflections on the competition series and a vision for future energy forecasting competitions. 相似文献
5.
《International Journal of Forecasting》2022,38(4):1405-1414
Hierarchical forecasting with intermittent time series is a challenge in both research and empirical studies. Extensive research focuses on improving the accuracy of each hierarchy, especially the intermittent time series at bottom levels. Then, hierarchical reconciliation can be used to improve the overall performance further. In this paper, we present a hierarchical-forecasting-with-alignment approach that treats the bottom-level forecasts as mutable to ensure higher forecasting accuracy on the upper levels of the hierarchy. We employ a pure deep learning forecasting approach, N-BEATS, for continuous time series at the top levels, and a widely used tree-based algorithm, LightGBM, for intermittent time series at the bottom level. The hierarchical-forecasting-with-alignment approach is a simple yet effective variant of the bottom-up method, accounting for biases that are difficult to observe at the bottom level. It allows suboptimal forecasts at the lower level to retain a higher overall performance. The approach in this empirical study was developed by the first author during the M5 Accuracy competition, ranking second place. The method is also business orientated and can be used to facilitate strategic business planning. 相似文献
6.
《International Journal of Forecasting》2022,38(4):1400-1404
This work presents key insights on the model development strategies used in our cross-learning-based retail demand forecast framework. The proposed framework outperforms state-of-the-art univariate models in the time series forecasting literature. It has achieved 17th position in the accuracy track of the M5 forecasting competition, which is among the top 1% of solutions. 相似文献
7.
Richard T. CarsonTolga Cenesizoglu Roger Parker 《International Journal of Forecasting》2011,27(3):923
We analyze whether it is better to forecast air travel demand using aggregate data at (say) a national level, or to aggregate the forecasts derived for individual airports using airport-specific data. We compare the US Federal Aviation Administration’s (FAA) practice of predicting the total number of passengers using macroeconomic variables with an equivalently specified AIM (aggregating individual markets) approach. The AIM approach outperforms the aggregate forecasting approach in terms of its out-of-sample air travel demand predictions for different forecast horizons. Variants of AIM, where we restrict the coefficient estimates of some explanatory variables to be the same across individual airports, generally dominate both the aggregate and AIM approaches. The superior out-of-sample performances of these so-called quasi-AIM approaches depend on the trade-off between heterogeneity and estimation uncertainty. We argue that the quasi-AIM approaches exploit the heterogeneity across individual airports efficiently, without suffering from as much estimation uncertainty as the AIM approach. 相似文献
8.
《International Journal of Forecasting》2022,38(4):1482-1491
The winning machine learning methods of the M5 Accuracy competition demonstrated high levels of forecast accuracy compared to the top-performing benchmarks in the history of the M-competitions. Yet, large-scale adoption is hampered due to the significant computational requirements to model, tune, and train these state-of-the-art algorithms. To overcome this major issue, we discuss the potential of transfer learning (TL) to reduce the computational effort in hierarchical forecasting and provide a proof of concept that TL can be applied on M5 top-performing methods. We demonstrate our easy-to-use TL framework on the recursive store-level LightGBM models of the M5 winning method and attain similar levels of forecast accuracy with roughly 25% less training time. Our findings provide evidence for a novel application of TL to facilitate the practical applicability of the M5 winning methods in large-scale settings with hierarchically structured data. 相似文献
9.
《International Journal of Forecasting》2022,38(4):1415-1425
This paper describes a deep-learning-based time-series forecasting method that was ranked third in the accuracy challenge of the M5 competition. We solved the problem using a deep-learning approach based on DeepAR, which is an auto-regressive recurrent network model conditioned on historical inputs. To address the intermittent and irregular characteristics of sales demand, we modified the training procedure of DeepAR; instead of using actual values for the historical inputs, our model uses values sampled from a trained distribution and feeds them to the network as past values. We obtained the final result using an ensemble of multiple models to make a robust and stable prediction. To appropriately select a model for the ensemble, each model was evaluated using the average weighted root mean squared scaled error, calculated for all levels of a wide range of past periods. 相似文献
10.
《International Journal of Forecasting》2022,38(4):1337-1345
The scientific method consists of making hypotheses or predictions and then carrying out experiments to test them once the actual results have become available, in order to learn from both successes and mistakes. This approach was followed in the M4 competition with positive results and has been repeated in the M5, with its organizers submitting their ten predictions/hypotheses about its expected results five days before its launch. The present paper presents these predictions/hypotheses and evaluates their realization according to the actual findings of the competition. The results indicate that well-established practices, like combining forecasts, exploiting explanatory variables, and capturing seasonality and special days, remain critical for enhancing forecasting performance, re-confirming also that relatively new approaches, like cross-learning algorithms and machine learning methods, display great potential. Yet, we show that simple, local statistical methods may still be competitive for forecasting high granularity data and estimating the tails of the uncertainty distribution, thus motivating future research in the field of retail sales forecasting. 相似文献
11.
《International Journal of Forecasting》2022,38(4):1531-1545
Probabilistic forecasts are necessary for robust decisions in the face of uncertainty. The M5 Uncertainty competition required participating teams to forecast nine quantiles for unit sales of various products at various aggregation levels and for different time horizons. This paper evaluates the forecasting performance of the quantile forecasts at different aggregation levels and at different quantile levels. We contrast this with some theoretical predictions, and discuss potential implications and promising future research directions for the practice of probabilistic forecasting. 相似文献
12.
《International Journal of Forecasting》2019,35(4):1424-1431
This paper describes the preprocessing and forecasting methods used by team Orbuculum during the qualifying match of the Global Energy Forecasting Competition 2017 (GEFCom2017). Tree-based algorithms (gradient boosting and quantile random forest) and neural networks made up an ensemble. The ensemble prediction quantiles were obtained by a simple averaging of the ensemble members’ prediction quantiles. The result shows a robust performance according to the pinball loss metric, with the ensemble model achieving third place in the qualifying match of the competition. 相似文献
13.
《International Journal of Forecasting》2020,36(1):98-104
Several researchers (Armstrong, 2001; Clemen, 1989; Makridakis and Winkler, 1983) have shown empirically that combination-based forecasting methods are very effective in real world settings. This paper discusses a combination-based forecasting approach that was used successfully in the M4 competition. The proposed approach was evaluated on a set of 100K time series across multiple domain areas with varied frequencies. The point forecasts submitted finished fourth based on the overall weighted average (OWA) error measure and second based on the symmetric mean absolute percent error (sMAPE). 相似文献
14.
《International Journal of Forecasting》2022,38(4):1507-1518
One of the most significant differences of M5 over previous forecasting competitions is that it was held on Kaggle, an online platform for data scientists and machine learning practitioners. Kaggle provides a gathering place, or virtual community, for web users who are interested in the M5 competition. Users can share code, models, features, and loss functions through online notebooks and discussion forums. Here, we study the social influence of this virtual community on user behavior in the M5 competition. We first research the content of the M5 virtual community by topic modeling and trend analysis. Further, we perform social media analysis to identify the potential relationship network of the virtual community. We study the roles and characteristics of some key participants who promoted the diffusion of information within the M5 virtual community. Overall, this study provides in-depth insights into the mechanism of the virtual community’s influence on the participants and has potential implications for future online competitions. 相似文献
15.
Mixed Poisson Distributions 总被引:3,自引:0,他引:3
Mixed Poisson distributions have been used in a wide range of scientific fields for modeling nonhomogeneous populations. This paper aims at reviewing the existing literature on Poisson mixtures by bringing together a great number of properties, while, at the same time, providing tangential information on general mixtures. A selective presentation of some of the most prominent members of the family of Poisson mixtures is made. 相似文献
16.
《International Journal of Forecasting》2023,39(2):674-690
Predicting the evolution of mortality rates plays a central role for life insurance and pension funds. Various stochastic frameworks have been developed to model mortality patterns by taking into account the main stylized facts driving these patterns. However, relying on the prediction of one specific model can be too restrictive and can lead to some well-documented drawbacks, including model misspecification, parameter uncertainty, and overfitting. To address these issues we first consider mortality modeling in a Bayesian negative-binomial framework to account for overdispersion and the uncertainty about the parameter estimates in a natural and coherent way. Model averaging techniques are then considered as a response to model misspecifications. In this paper, we propose two methods based on leave-future-out validation and compare them to standard Bayesian model averaging (BMA) based on marginal likelihood. An intensive numerical study is carried out over a large range of simulation setups to compare the performances of the proposed methodologies. An illustration is then proposed on real-life mortality datasets, along with a sensitivity analysis to a Covid-type scenario. Overall, we found that both methods based on an out-of-sample criterion outperform the standard BMA approach in terms of prediction performance and robustness. 相似文献
17.
Warren C. Sanderson Sergei Scherbov Brian C. O'Neill Wolfgang Lutz 《Revue internationale de statistique》2004,72(2):157-166
Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because it allows them to answer \"what if\" type questions properly when outcomes are uncertain. The second is a new category that we call \"future jump-off date forecasts\". Future jump-off date forecasts are valuable because they show policy-makers the likelihood that crucial features of today's forecasts will also be present in forecasts made in the future. 相似文献
18.
《International Journal of Forecasting》2022,38(1):267-281
Understanding changes in the frequency, severity, and seasonality of daily temperature extremes is important for public policy decisions regarding heat waves and cold snaps. A heat wave is sometimes defined in terms of both the daily minimum and maximum temperature, which necessitates the generation of forecasts of their joint distribution. In this paper, we develop time series models with the aim of providing insight and producing forecasts of the joint distribution that can challenge the accuracy of forecasts based on ensemble predictions from a numerical weather prediction model. We use ensemble model output statistics to recalibrate the raw ensemble predictions for the marginal distributions, with ensemble copula coupling used to capture the dependency between the marginal distributions. In terms of time series modelling, we consider a bivariate VARMA-MGARCH model. We use daily Spanish data recorded over a 65-year period, and find that, for the 5-year out-of-sample period, the recalibrated ensemble predictions outperform the time series models in terms of forecast accuracy. 相似文献
19.
A. Prskawetz T. Kgel W.C. Sanderson S. Scherbov 《International Journal of Forecasting》2007,23(4):587-602
During recent years there has been an increasing awareness of the explanatory power of population age structure variables in economic growth regressions. We estimate a new cross-country regression model of the effects of age structure change on economic growth. We use the new model and recent probabilistic demographic forecasts for India to derive the uncertainty of predicted economic growth rates caused by the uncertainty in demographic developments. 相似文献
20.
《International Journal of Forecasting》2022,38(4):1365-1385
This paper describes the M5 “Uncertainty” competition, the second of two parallel challenges of the latest M competition, aiming to advance the theory and practice of forecasting. The particular objective of the M5 “Uncertainty” competition was to accurately forecast the uncertainty distributions of the realized values of 42,840 time series that represent the hierarchical unit sales of the largest retail company in the world by revenue, Walmart. To do so, the competition required the prediction of nine different quantiles (0.005, 0.025, 0.165, 0.250, 0.500, 0.750, 0.835, 0.975, and 0.995), that can sufficiently describe the complete distributions of future sales. The paper provides details on the implementation and execution of the M5 “Uncertainty” competition, presents its results and the top-performing methods, and summarizes its major findings and conclusions. Finally, it discusses the implications of its findings and suggests directions for future research. 相似文献