首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study proposes a new, novel crude oil price forecasting method based on online media text mining, with the aim of capturing the more immediate market antecedents of price fluctuations. Specifically, this is an early attempt to apply deep learning techniques to crude oil forecasting, and to extract hidden patterns within online news media using a convolutional neural network (CNN). While the news-text sentiment features and the features extracted by the CNN model reveal significant relationships with the price change, they need to be grouped according to their topics in the price forecasting in order to obtain a greater forecasting accuracy. This study further proposes a feature grouping method based on the Latent Dirichlet Allocation (LDA) topic model for distinguishing effects from various online news topics. Optimized input variable combination is constructed using lag order selection and feature selection methods. Our empirical results suggest that the proposed topic-sentiment synthesis forecasting models perform better than the older benchmark models. In addition, text features and financial features are shown to be complementary in producing more accurate crude oil price forecasts.  相似文献   

2.
This paper proposes a hybrid ensemble forecasting methodology that integrating empirical mode decomposition (EMD), long short-term memory (LSTM) and extreme learning machine (ELM) for the monthly biofuel (a typical agriculture-related energy) production based on the principle of decomposition—reconstruction—ensemble. The proposed methodology involves four main steps: data decomposition via EMD, component reconstruction via a fine-to-coarse (FTC) method, individual prediction via LSTM and ELM algorithms, and ensemble prediction via a simple addition (ADD) method. For illustration and verification, the biofuel monthly production data of the USA is used as the our sample data, and the empirical results indicate that the proposed hybrid ensemble forecasting model statistically outperforms all considered benchmark models considered in terms of the forecasting accuracy. This indicates that the proposed hybrid ensemble forecasting methodology integrating the EMD-LSTM-ELM models based on the decomposition—reconstruction—ensemble principle has been proved to be a competitive model for the prediction of biofuel production.  相似文献   

3.
This paper uses real-time data to mimic real-time GDP forecasting activity. Through automatic searches for the best indicators for predicting GDP one and four steps ahead, we compare the out-of-sample forecasting performance of adaptive models using different data vintages, and produce three main findings. First, despite data revisions, the forecasting performance of models with indicators is better, but this advantage tends to vanish over longer forecasting horizons. Second, the practice of using fully updated datasets at the time the forecast is made (i.e., taking the best available measures of today's economic situation) does not appear to bring any effective improvement in forecasting ability: the first GDP release is predicted equally well by models using real-time data as by models using the latest available data. Third, although the first release is a rational forecast of GDP data after all statistical revisions have taken place, the forecast based on the latest available GDP data (i.e. the “temporarily best” measures) may be improved by combining preliminary official releases with one-step-ahead forecasts.  相似文献   

4.
货运量精准预测是多式联运网络高效协同发展的重要基础,货运量时变性强、数据多样性缺失是实现精准货运量预测的问题所在。基于此,通过挖掘货物运输量(集装箱)的时间变化特征,构建初始相关时间特征输入集,结合斯皮尔曼相关性系数分布,采用Bagging+BP集成学习方法训练多个弱分类器,最终组合获取高精度的强学习模型。以南京龙潭港为例,对自回归移动平均模型(ARIMA)、Bagging+BP集成学习网络以及长短时记忆神经网络(LSTM)三种模型进行评价,实验结果表明,相比于其他模型,提出的Bagging+BP集成学习网络预测性能良好,有一定的实用价值。  相似文献   

5.
We present a refined parametric model for forecasting electricity demand which performed particularly well in the recent Global Energy Forecasting Competition (GEFCom 2012). We begin by motivating and presenting a simple parametric model, treating the electricity demand as a function of the temperature and day of the data. We then set out a series of refinements of the model, explaining the rationale for each, and using the competition scores to demonstrate that each successive refinement step increases the accuracy of the model’s predictions. These refinements include combining models from multiple weather stations, removing outliers from the historical data, and special treatments of public holidays.  相似文献   

6.
The M5 accuracy competition has presented a large-scale hierarchical forecasting problem in a realistic grocery retail setting in order to evaluate an extended range of forecasting methods, particularly those adopting machine learning. The top ranking solutions adopted a global bottom-up approach, by which is meant using global forecasting methods to generate bottom level forecasts in the hierarchy and then using a bottom-up strategy to obtain coherent forecasts for aggregate levels. However, whether the observed superior performance of the global bottom-up approach is robust over various test periods or only an accidental result, is an important question for retail forecasting researchers and practitioners. We conduct experiments to explore the robustness of the global bottom-up approach, and make comments on the efforts made by the top-ranking teams to improve the core approach. We find that the top-ranking global bottom-up approaches lack robustness across time periods in the M5 data. This inconsistent performance makes the M5 final rankings somewhat of a lottery. In future forecasting competitions, we suggest the use of multiple rolling test sets to evaluate the forecasting performance in order to reward robustly performing forecasting methods, a much needed characteristic in any application.  相似文献   

7.
This paper describes the methods used by Team Cassandra, a joint effort between IBM Research Australia and the University of Melbourne, in the GEFCom2017 load forecasting competition. An important first phase in the forecasting effort involved a deep exploration of the underlying dataset. Several data visualisation techniques were applied to help us better understand the nature and size of gaps, outliers, the relationships between different entities in the dataset, and the relevance of custom date ranges. Improved, cleaned data were then used to train multiple probabilistic forecasting models. These included a number of standard and well-known approaches, as well as a neural-network based quantile forecast model that was developed specifically for this dataset. Finally, model selection and forecast combination were used to choose a custom forecasting model for every entity in the dataset.  相似文献   

8.
This article introduces the winning method at the M5 Accuracy competition. The presented method takes a simple manner of averaging the results of multiple base forecasting models that have been constructed via partial pooling of multi-level data. All base forecasting models of adopting direct or recursive multi-step forecasting methods are trained by the machine learning technique, LightGBM, from three different levels of data pools. At the competition, the simple averaging of the multiple direct and recursive forecasting models, called DRFAM, obtained the complementary effects between direct and recursive multi-step forecasting of the multi-level product sales to improve the accuracy and the robustness.  相似文献   

9.
We describe and analyse the approach used by Team TinTin (Souhaib Ben Taieb and Rob J Hyndman) in the Load Forecasting track of the Kaggle Global Energy Forecasting Competition 2012. The competition involved a hierarchical load forecasting problem for a US utility with 20 geographical zones. The data available consisted of the hourly loads for the 20 zones and hourly temperatures from 11 weather stations, for four and a half years. For each zone, the hourly electricity loads for nine different weeks needed to be predicted without having the locations of either the zones or stations. We used separate models for each hourly period, with component-wise gradient boosting for estimating each model using univariate penalised regression splines as base learners. The models allow for the electricity demand changing with the time-of-year, day-of-week, time-of-day, and on public holidays, with the main predictors being current and past temperatures, and past demand. Team TinTin ranked fifth out of 105 participating teams.  相似文献   

10.
Forecasting customer flow is key for retailers in making daily operational decisions, but small retailers often lack the resources to obtain such forecasts. Rather than forecasting stores’ total customer flows, this research utilizes emerging third-party mobile payment data to provide participating stores with a value-added service by forecasting their share of daily customer flows. These customer transactions using mobile payments can then be utilized further to derive retailers’ total customer flows indirectly, thereby overcoming the constraints that small retailers face. We propose a third-party mobile-payment-platform centered daily mobile payments forecasting solution based on an extension of the newly-developed Gradient Boosting Regression Tree (GBRT) method which can generate multi-step forecasts for many stores concurrently. Using empirical forecasting experiments with thousands of time series, we show that GBRT, together with a strategy for multi-period-ahead forecasting, provides more accurate forecasts than established benchmarks. Pooling data from the platform across stores leads to benefits relative to analyzing the data individually, thus demonstrating the value of this machine learning application.  相似文献   

11.
Probabilistic forecasting, i.e., estimating a time series’ future probability distribution given its past, is a key enabler for optimizing business processes. In retail businesses, for example, probabilistic demand forecasts are crucial for having the right inventory available at the right time and in the right place. This paper proposes DeepAR, a methodology for producing accurate probabilistic forecasts, based on training an autoregressive recurrent neural network model on a large number of related time series. We demonstrate how the application of deep learning techniques to forecasting can overcome many of the challenges that are faced by widely-used classical approaches to the problem. By means of extensive empirical evaluations on several real-world forecasting datasets, we show that our methodology produces more accurate forecasts than other state-of-the-art methods, while requiring minimal manual work.  相似文献   

12.
Forecasting cash demands at automatic teller machines (ATMs) is challenging, due to the heteroskedastic nature of such time series. Conventional global learning computational intelligence (CI) models, with their generalized learning behaviors, may not capture the complex dynamics and time-varying characteristics of such real-life time series data efficiently. In this paper, we propose to use a novel local learning model of the pseudo self-evolving cerebellar model articulation controller (PSECMAC) associative memory network to produce accurate forecasts of ATM cash demands. As a computational model of the human cerebellum, our model can incorporate local learning to effectively model the complex dynamics of heteroskedastic time series. We evaluated the forecasting performance of our PSECMAC model against the performances of current established CI and regression models using the NN5 competition dataset of 111 empirical daily ATM cash withdrawal series. The evaluation results show that the forecasting capability of our PSECMAC model exceeds that of the benchmark local and global-learning based models.  相似文献   

13.
Demand forecasting is and has been for years a topic of great interest in the electricity sector, being the temperature one of its major drivers. Indeed, one of the challenges when modelling the load is to choose the right weather station, or set of stations, for a given load time series. However, only a few research papers have been devoted to this topic. This paper reviews the most relevant methods that were applied during the Global Energy Forecasting Competition of 2014 (GEFCom2014) and presents a new approach to weather station selection, based on Genetic Algorithms (GA), which allows finding the best set of stations for any demand forecasting model, and outperforms the results of existing methods. Furthermore its performance has also been tested using GEFCom2012 data, providing significant error improvements. Finally, the possibility of combining the weather stations selected by the proposed GA using the BFGS algorithm is briefly tested, providing promising results.  相似文献   

14.
The M5 competition uncertainty track aims for probabilistic forecasting of sales of thousands of Walmart retail goods. We show that the M5 competition data face strong overdispersion and sporadic demand, especially zero demand. We discuss modeling issues concerning adequate probabilistic forecasting of such count data processes. Unfortunately, the majority of popular prediction methods used in the M5 competition (e.g. lightgbm and xgboost GBMs) fail to address the data characteristics, due to the considered objective functions. Distributional forecasting provides a suitable modeling approach to overcome those problems. The GAMLSS framework allows for flexible probabilistic forecasting using low-dimensional distributions. We illustrate how the GAMLSS approach can be applied to M5 competition data by modeling the location and scale parameters of various distributions, e.g. the negative binomial distribution. Finally, we discuss software packages for distributional modeling and their drawbacks, like the R package gamlss with its package extensions, and (deep) distributional forecasting libraries such as TensorFlow Probability.  相似文献   

15.
丁媛媛 《价值工程》2014,(18):321-322
在汛期,天气复杂多变,地面测报人员若不具备全面的实际工作经验,对突发性的、灾害性的天气应急能力不强,较易出现各种错误。本文针对本地区汛期常见的雷暴、强降水、大风、冰雹天气现象,浅要分析了汛期地面测报人员的注意事项。最后,概述了汛期其他天气状况下的工作要点,希望有助于提高地面测报工作的业务质量。  相似文献   

16.
Weather forecasts are an important input to many electricity demand forecasting models. This study investigates the use of weather ensemble predictions in electricity demand forecasting for lead times from 1 to 10 days ahead. A weather ensemble prediction consists of 51 scenarios for a weather variable. We use these scenarios to produce 51 scenarios for the weather-related component of electricity demand. The results show that the average of the demand scenarios is a more accurate demand forecast than that produced using traditional weather forecasts. We use the distribution of the demand scenarios to estimate the demand forecast uncertainty. This compares favourably with estimates produced using univariate volatility forecasting methods.  相似文献   

17.
Hierarchical forecasting with intermittent time series is a challenge in both research and empirical studies. Extensive research focuses on improving the accuracy of each hierarchy, especially the intermittent time series at bottom levels. Then, hierarchical reconciliation can be used to improve the overall performance further. In this paper, we present a hierarchical-forecasting-with-alignment approach that treats the bottom-level forecasts as mutable to ensure higher forecasting accuracy on the upper levels of the hierarchy. We employ a pure deep learning forecasting approach, N-BEATS, for continuous time series at the top levels, and a widely used tree-based algorithm, LightGBM, for intermittent time series at the bottom level. The hierarchical-forecasting-with-alignment approach is a simple yet effective variant of the bottom-up method, accounting for biases that are difficult to observe at the bottom level. It allows suboptimal forecasts at the lower level to retain a higher overall performance. The approach in this empirical study was developed by the first author during the M5 Accuracy competition, ranking second place. The method is also business orientated and can be used to facilitate strategic business planning.  相似文献   

18.
We construct factor models based on disaggregate survey data for forecasting national aggregate macroeconomic variables. Our methodology applies regional and sectoral factor models to Norges Bank’s regional survey and to the Swedish Business Tendency Survey. The analysis identifies which of the pieces of information extracted from the individual regions in Norges Bank’s survey and the sectors for the two surveys perform particularly well at forecasting different variables at various horizons. The results show that several factor models beat an autoregressive benchmark in forecasting inflation and the unemployment rate. However, the factor models are most successful at forecasting GDP growth. Forecast combinations using the past performances of regional and sectoral factor models yield the most accurate forecasts in the majority of the cases.  相似文献   

19.
This paper evaluates the performances of prediction intervals generated from alternative time series models, in the context of tourism forecasting. The forecasting methods considered include the autoregressive (AR) model, the AR model using the bias-corrected bootstrap, seasonal ARIMA models, innovations state space models for exponential smoothing, and Harvey’s structural time series models. We use thirteen monthly time series for the number of tourist arrivals to Hong Kong and Australia. The mean coverage rates and widths of the alternative prediction intervals are evaluated in an empirical setting. It is found that all models produce satisfactory prediction intervals, except for the autoregressive model. In particular, those based on the bias-corrected bootstrap perform best in general, providing tight intervals with accurate coverage rates, especially when the forecast horizon is long.  相似文献   

20.
A new class of forecasting models is proposed that extends the realized GARCH class of models through the inclusion of option prices to forecast the variance of asset returns. The VIX is used to approximate option prices, resulting in a set of cross-equation restrictions on the model’s parameters. The full model is characterized by a nonlinear system of three equations containing asset returns, the realized variance, and the VIX, with estimation of the parameters based on maximum likelihood methods. The forecasting properties of the new class of forecasting models, as well as a number of special cases, are investigated and applied to forecasting the daily S&P500 index realized variance using intra-day and daily data from September 2001 to November 2017. The forecasting results provide strong support for including the realized variance and the VIX to improve variance forecasts, with linear conditional variance models performing well for short-term one-day-ahead forecasts, whereas log-linear conditional variance models tend to perform better for intermediate five-day-ahead forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号