首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The CreditRisk+ model is widely used in industry for computing the loss of a credit portfolio. The standard CreditRisk+ model assumes independence among a set of common risk factors, a simplified assumption that leads to computational ease. In this article, we propose to model the common risk factors by a class of multivariate extreme copulas as a generalization of bivariate Fréchet copulas. Further we present a conditional compound Poisson model to approximate the credit portfolio and provide a cost-efficient recursive algorithm to calculate the loss distribution. The new model is more flexible than the standard model, with computational advantages compared to other dependence models of risk factors.  相似文献   

2.
This paper proposes a new methodology to compute Value at Risk (VaR) for quantifying losses in credit portfolios. We approximate the cumulative distribution of the loss function by a finite combination of Haar wavelet basis functions and calculate the coefficients of the approximation by inverting its Laplace transform. The Wavelet Approximation (WA) method is particularly suitable for non-smooth distributions, often arising in small or concentrated portfolios, when the hypothesis of the Basel II formulas are violated. To test the methodology we consider the Vasicek one-factor portfolio credit loss model as our model framework. WA is an accurate, robust and fast method, allowing the estimation of the VaR much more quickly than with a Monte Carlo (MC) method at the same level of accuracy and reliability.  相似文献   

3.
As the skewed return distribution is a prominent feature in nonlinear portfolio selection problems which involve derivative assets with nonlinear payoff structures, Value-at-Risk (VaR) is particularly suitable to serve as a risk measure in nonlinear portfolio selection. Unfortunately, the nonlinear portfolio selection formulation using VaR risk measure is in general a computationally intractable optimization problem. We investigate in this paper nonlinear portfolio selection models using approximate parametric Value-at-Risk. More specifically, we use first-order and second-order approximations of VaR for constructing portfolio selection models, and show that the portfolio selection models based on Delta-only, Delta–Gamma-normal and worst-case Delta–Gamma VaR approximations can be reformulated as second-order cone programs, which are polynomially solvable using interior-point methods. Our simulation and empirical results suggest that the model using Delta–Gamma-normal VaR approximation performs the best in terms of a balance between approximation accuracy and computational efficiency.  相似文献   

4.
Despite well-known shortcomings as a risk measure, Value-at-Risk (VaR) is still the industry and regulatory standard for the calculation of risk capital in banking and insurance. This paper is concerned with the numerical estimation of the VaR for a portfolio position as a function of different dependence scenarios on the factors of the portfolio. Besides summarizing the most relevant analytical bounds, including a discussion of their sharpness, we introduce a numerical algorithm which allows for the computation of reliable (sharp) bounds for the VaR of high-dimensional portfolios with dimensions d possibly in the several hundreds. We show that additional positive dependence information will typically not improve the upper bound substantially. In contrast higher order marginal information on the model, when available, may lead to strongly improved bounds. Several examples of practical relevance show how explicit VaR bounds can be obtained. These bounds can be interpreted as a measure of model uncertainty induced by possible dependence scenarios.  相似文献   

5.
This paper evaluates several alternative formulations for minimizing the credit risk of a portfolio of financial contracts with different counterparties. Credit risk optimization is challenging because the portfolio loss distribution is typically unavailable in closed form. This makes it difficult to accurately compute Value-at-Risk (VaR) and expected shortfall (ES) at the extreme quantiles that are of practical interest to financial institutions. Our formulations all exploit the conditional independence of counterparties under a structural credit risk model. We consider various approximations to the conditional portfolio loss distribution and formulate VaR and ES minimization problems for each case. We use two realistic credit portfolios to assess the in- and out-of-sample performance for the resulting VaR- and ES-optimized portfolios, as well as for those which we obtain by minimizing the variance or the second moment of the portfolio losses. We find that a Normal approximation to the conditional loss distribution performs best from a practical standpoint.  相似文献   

6.
This paper investigates the role of high-order moments in the estimation of conditional value at risk (VaR). We use the skewed generalized t distribution (SGT) with time-varying parameters to provide an accurate characterization of the tails of the standardized return distribution. We allow the high-order moments of the SGT density to depend on the past information set, and hence relax the conventional assumption in conditional VaR calculation that the distribution of standardized returns is iid. The maximum likelihood estimates show that the time-varying conditional volatility, skewness, tail-thickness, and peakedness parameters of the SGT density are statistically significant. The in-sample and out-of-sample performance results indicate that the conditional SGT-GARCH approach with autoregressive conditional skewness and kurtosis provides very accurate and robust estimates of the actual VaR thresholds.  相似文献   

7.
Determining the contributions of sub-portfolios or single exposures to portfolio-wide economic capital for credit risk is an important risk measurement task. Often, economic capital is measured as the Value-at-Risk (VaR) of the portfolio loss distribution. For many of the credit portfolio risk models used in practice, the VaR contributions then have to be estimated from Monte Carlo samples. In the context of a partly continuous loss distribution (i.e. continuous except for a positive point mass on zero), we investigate how to combine kernel estimation methods with importance sampling to achieve more efficient (i.e. less volatile) estimation of VaR contributions.  相似文献   

8.
Many empirical studies suggest that the distribution of risk factors has heavy tails. One always assumes that the underlying risk factors follow a multivariate normal distribution that is a assumption in conflict with empirical evidence. We consider a multivariate t distribution for capturing the heavy tails and a quadratic function of the changes is generally used in the risk factor for a non-linear asset. Although Monte Carlo analysis is by far the most powerful method to evaluate a portfolio Value-at-Risk (VaR), a major drawback of this method is that it is computationally demanding. In this paper, we first transform the assets into the risk on the returns by using a quadratic approximation for the portfolio. Second, we model the return’s risk factors by using a multivariate normal as well as a multivariate t distribution. Then we provide a bootstrap algorithm with importance resampling and develop the Laplace method to improve the efficiency of simulation, to estimate the portfolio loss probability and evaluate the portfolio VaR. It is a very powerful tool that propose importance sampling to reduce the number of random number generators in the bootstrap setting. In the simulation study and sensitivity analysis of the bootstrap method, we observe that the estimate for the quantile and tail probability with importance resampling is more efficient than the naive Monte Carlo method. We also note that the estimates of the quantile and the tail probability are not sensitive to the estimated parameters for the multivariate normal and the multivariate t distribution. The research of Shih-Kuei Lin was partially supported by the National Science Council under grants NSC 93-2146-H-259-023. The research of Cheng-Der Fuh was partially supported by the National Science Council under grants NSC 94-2118-M-001-028.  相似文献   

9.
It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH model, such predictions have typically required time-consuming simulations of the aggregated returns distributions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish–Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets, for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.  相似文献   

10.
Risk Measurement Performance of Alternative Distribution Functions   总被引:1,自引:0,他引:1  
This paper evaluates the performance of three extreme value distributions, i.e., generalized Pareto distribution (GPD), generalized extreme value distribution (GEV), and Box‐Cox‐GEV, and four skewed fat‐tailed distributions, i.e., skewed generalized error distribution (SGED), skewed generalized t (SGT), exponential generalized beta of the second kind (EGB2), and inverse hyperbolic sign (IHS) in estimating conditional and unconditional value at risk (VaR) thresholds. The results provide strong evidence that the SGT, EGB2, and IHS distributions perform as well as the more specialized extreme value distributions in modeling the tail behavior of portfolio returns. All three distributions produce similar VaR thresholds and perform better than the SGED and the normal distribution in approximating the extreme tails of the return distribution. The conditional coverage and the out‐of‐sample performance tests show that the actual VaR thresholds are time varying to a degree not captured by unconditional VaR measures. In light of the fact that VaR type measures are employed in many different types of financial and insurance applications including the determination of capital requirements, capital reserves, the setting of insurance deductibles, the setting of reinsurance cedance levels, as well as the estimation of expected claims and expected losses, these results are important to financial managers, actuaries, and insurance practitioners.  相似文献   

11.
This paper develops a computational approach to determining the moments of the distribution of the error in a dynamic hedging or payoff replication strategy under discrete trading. In particular, an algorithm is developed for portfolio affine trading strategies, which lead to portfolio dynamics that are affine in the portfolio variable. This structure can be exploited in the computation of moments of the hedging error of such a strategy, leading to a lattice based backward recursion similar in nature to lattice based pricing techniques, but not requiring the portfolio variable. We use this algorithm to analyze the performance of portfolio affine hedging strategies under discrete trading through the moments of the hedging error.  相似文献   

12.
Considering the growing need for managing financial risk, Value-at-Risk (VaR) prediction and portfolio optimisation with a focus on VaR have taken up an important role in banking and finance. Motivated by recent results showing that the choice of VaR estimator does not crucially influence decision-making in certain practical applications (e.g. in investment rankings), this study analyses the important question of how asset allocation decisions are affected when alternative VaR estimation methodologies are used. Focusing on the most popular, successful and conceptually different conditional VaR estimation techniques (i.e. historical simulation, peak over threshold method and quantile regression) and the flexible portfolio model of Campbell et al. [J. Banking Finance. 2001, 25(9), 1789–1804], we show in an empirical example and in a simulation study that these methods tend to deliver similar asset weights. In other words, optimal portfolio allocations appear to be not very sensitive to the choice of VaR estimator. This finding, which is robust in a variety of distributional environments and pre-whitening settings, supports the notion that, depending on the specific application, simple standard methods (i.e. historical simulation) used by many commercial banks do not necessarily have to be replaced by more complex approaches (based on, e.g. extreme value theory).  相似文献   

13.
We derive an analytic approximation to the credit loss distribution of large portfolios by letting the number of exposures tend to infinity. Defaults and rating migrations for individual exposures are driven by a factor model in order to capture co-movements in changing credit quality. The limiting credit loss distribution obeys the empirical stylized facts of skewness and heavy tails. We show how portfolio features like the degree of systematic risk, credit quality and term to maturity affect the distributional shape of portfolio credit losses. Using empirical data, it appears that the Basle 8% rule corresponds to quantiles with confidence levels exceeding 98%. The limit law's relevance for credit risk management is investigated further by checking its applicability to portfolios with a finite number of exposures. Relatively homogeneous portfolios of 300 exposures can be well approximated by the limit law. A minimum of 800 exposures is required if portfolios are relatively heterogeneous. Realistic loan portfolios often contain thousands of exposures implying that our analytic approach can be a fast and accurate alternative to the standard Monte-Carlo simulation techniques adopted in much of the literature.  相似文献   

14.
Polynomial goal programming (PGP) is a flexible method that allows investor preferences for different moments of the return distribution of financial assets to be included in the portfolio optimization. The method is intuitive and particularly suitable for incorporating investor preferences in higher moments of the return distribution. However, until now, PGP has not been able to meet its full potential because it requires quantification of “real” preference parameters towards those moments. To date, the chosen preference parameters have been selected somewhat “arbitrarily”. Our goal is to calculate implied sets of preference parameters using investors’ choices of and the importance they attribute to risk and performance measures. We use three groups of institutional investors—pension funds, insurance companies, and endowments—and derive implied sets of preference parameters in the context of a hedge fund portfolio optimization. To determine “real” preferences for the higher moments of the portfolio return distribution, we first fit implied preference parameters so that the PGP optimal portfolio is identical to the desired hedge fund portfolio. With the obtained economically justified sets of preference parameters, the well-established PGP framework can be employed more efficiently to derive allocations that satisfy institutional investor expectations for hedge fund investments. Furthermore, the implied preference parameters enable fund of hedge fund managers and other investment managers to derive optimal portfolio allocations based on specific investor expectations. Moreover, the importance of individual moments, as well as their marginal rates of substitution, can be assessed.  相似文献   

15.
We examine the impact of adding either a VaR or a CVaR constraint to the mean–variance model when security returns are assumed to have a discrete distribution with finitely many jump points. Three main results are obtained. First, portfolios on the VaR-constrained boundary exhibit (K + 2)-fund separation, where K is the number of states for which the portfolios suffer losses equal to the VaR bound. Second, portfolios on the CVaR-constrained boundary exhibit (K + 3)-fund separation, where K is the number of states for which the portfolios suffer losses equal to their VaRs. Third, an example illustrates that while the VaR of the CVaR-constrained optimal portfolio is close to that of the VaR-constrained optimal portfolio, the CVaR of the former is notably smaller than that of the latter. This result suggests that a CVaR constraint is more effective than a VaR constraint to curtail large losses in the mean–variance model.  相似文献   

16.
随着保险投资新政出台,我国保险企业的投资渠道拓宽,其中以非上市股权和债权投资为代表的另类投资日趋增加。采用我国上市保险公司为研究标的,以其投资组合为研究对象,采用Va R和RAROC模型,以相关金融市场数据来界定不同投资类别的收益与风险,计算保险公司的投资绩效,研究结果表明,另类投资加入,明显提升了保险公司的投资组合绩效。  相似文献   

17.
赵铮  王瀛 《南方金融》2012,(7):61-66,45
本文以棉花、铜、天然橡胶三个期货合约为研究对象,基于t-Copula模型,利用Monte Carlo模拟法计算在一定权重下由三个品种构成的期货投资组合的VaR和ES值作为投资组合的保证金数值。Kupiec回溯测试结果表明,t-Copula模型结合极值理论计算出的期货投资组合保证金相比其他方法能够在较好覆盖极端风险的同时降低投资成本。  相似文献   

18.
Value-at-Risk (VaR) has become one of the standard measures for assessing risk not only in the financial industry but also for asset allocations of individual investors. The traditional mean–variance framework for portfolio selection should, however, be revised when the investor's concern is the VaR instead of the standard deviation. This is especially true when asset returns are not normal. In this paper, we incorporate VaR in portfolio selection, and we propose a mean–VaR efficient frontier. Due to the two-objective optimization problem that is associated with the mean–VaR framework, an evolutionary multi-objective approach is required to construct the mean–VaR efficient frontier. Specifically, we consider the elitist non-dominated sorting Genetic Algorithm (NSGA-II). From our empirical analysis, we conclude that the risk-averse investor might inefficiently allocate his/her wealth if his/her decision is based on the mean–variance framework.  相似文献   

19.
20.
In the present paper, we give sufficient conditions for an ordering of De Pril approximations of the distribution of the number of claims in an insurance portfolio of independent policies. Possible extensions are discussed, both for the De Pril approximation and the Kornya approximation. A numerical example is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号