首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper attempts a replication of the Cornwell and Rupert (1988) study—hereafter CR. The CR study investigated the efficiency gains in a returns to schooling example by applying alternative sets of instrumental variables estimators for panel data regressions proposed by Hausman and Taylor (1981), Amemiya and MaCurdy (1986), and Breusch, Mizon, and Schmidt (1989). Corrections on the CR data set lead to changes in the legitimate set of instruments, when the time dummies are excluded from the regression, and to much lower empirical gains in efficiency than those reported in CR. If the time dummies are retained in the wage equation, the experience coefficient is not estimable by the within regression, and the empirical gains in efficiency from using the IV procedures are not limited to the time-invariant education coefficient.  相似文献   

2.
We provide a set of conditions sufficient for consistency of a general class of fixed effects instrumental variables (FE-IV) estimators in the context of a correlated random coefficient panel data model, where one ignores the presence of individual-specific slopes. We discuss cases where the assumptions are met and violated. Monte Carlo simulations verify that the FE-IV estimator of the population averaged effect performs notably better than other standard estimators, provided a full set of period dummies is included. We also propose a simple test of selection bias in unbalanced panels when we suspect the slopes may vary by individual.  相似文献   

3.
《Journal of econometrics》1986,32(1):127-141
The purpose of this paper is to present and analyze an instrumental variables estimator for limited dependent variable models that does not require functional form assumptions for the distribution of disturbances. This estimator is a weighted instrumental variables estimator, where the weight is the ratio of a multivariate normal density to the actual density of the instrumental variables. A semi-non-parametric estimator of the weights is presented and some conjectures concerning the asymptotic distribution of the estimator are discussed.  相似文献   

4.
In nonparametric instrumental variable estimation, the function being estimated is the solution to an integral equation. A solution may not exist if, for example, the instrument is not valid. This paper discusses the problem of testing the null hypothesis that a solution exists against the alternative that there is no solution. We give necessary and sufficient conditions for existence of a solution and show that uniformly consistent testing of an unrestricted null hypothesis is not possible. Uniformly consistent testing is possible, however, if the null hypothesis is restricted by assuming that any solution to the integral equation is smooth. Many functions of interest in applied econometrics, including demand functions and Engel curves, are expected to be smooth. The paper presents a statistic for testing the null hypothesis that a smooth solution exists. The test is consistent uniformly over a large class of probability distributions of the observable random variables for which the integral equation has no smooth solution. The finite-sample performance of the test is illustrated through Monte Carlo experiments.  相似文献   

5.
This paper proposes a new instrumental variables estimator for a dynamic panel model with fixed effects with good bias and mean squared error properties even when identification of the model becomes weak near the unit circle. We adopt a weak instrument asymptotic approximation to study the behavior of various estimators near the unit circle. We show that an estimator based on long differencing the model is much less biased than conventional implementations of the GMM estimator for the dynamic panel model. We also show that under the weak instrument approximation conventional GMM estimators are dominated in terms of mean squared error by an estimator with far less moment conditions. The long difference (LD) estimator mimics the infeasible optimal procedure through its reliance on a small set of moment conditions.  相似文献   

6.
The most popular econometric models in the panel data literature are the class of linear panel data models with unobserved individual- and/or time-specific effects. The consistency of parameter estimators and the validity of their economic interpretations as marginal effects depend crucially on the correct functional form specification of the linear panel data model. In this paper, a new class of residual-based tests is proposed for checking the validity of dynamic panel data models with both large cross-sectional units and time series dimensions. The individual and time effects can be fixed or random, and panel data can be balanced or unbalanced. The tests can detect a wide range of model misspecifications in the conditional mean of a dynamic panel data model, including functional form and lag misspecification. They check a large number of lags so that they can capture misspecification at any lag order asymptotically. No common alternative is assumed, thus allowing for heterogeneity in the degrees and directions of functional form misspecification across individuals. Thanks to the use of panel data with large N and T, the proposed nonparametric tests have an asymptotic normal distribution under the null hypothesis without requiring the smoothing parameters to grow with the sample sizes. This suggests better nonparametric asymptotic approximation for the panel data than for time series or cross sectional data. This is confirmed in a simulation study. We apply the new tests to test linear specification of cross-country growth equations and found significant nonlinearities in mean for OECD countries’ growth equation for annual and quintannual panel data.  相似文献   

7.
A general framework for frontier estimation with panel data   总被引:1,自引:0,他引:1  
The main objective of the paper is to present a general framework for estimating production frontier models with panel data. A sample of firms i = 1, ..., N is observed on several time periods t = 1, ... T. In this framework, nonparametric stochastic models for the frontier will be analyzed. The usual parametric formulations of the literature are viewed as particular cases and the convergence of the obtained estimators in this general framework are investigated. Special attention is devoted to the role of N and of T on the speeds of convergence of the obtained estimators. First, a very general model is investigated. In this model almost no restriction is imposed on the structure of the model or of the inefficiencies. This model is estimable from a nonparametric point of view but needs large values of T and of N to obtain reliable estimates of the individual production functions and estimates of the frontier function. Then more specific nonparametric firm effect models are presented. In these cases, only NT must be large to estimate the common production function; but again both large N and T are needed for estimating individual efficiencies and for estimating the frontier. The methods are illustrated through a numerical example with real data.  相似文献   

8.
For dynamic panel models with cross-sectional dependence, several unit root tests are constructed using a Huber-type instrument, whose null asymptotics are standard Gaussian and do not depend on nuisance parameters. A Monte-Carlo simulation shows that the proposed tests have better sizes and comparable powers relative to other two existing tests developed for cross-sectionally dependent dynamic panel models.  相似文献   

9.
We show how the dynamic logit model for binary panel data may be approximated by a quadratic exponential model. Under the approximating model, simple sufficient statistics exist for the subject-specific parameters introduced to capture the unobserved heterogeneity between subjects. The latter must be distinguished from the state dependence which is accounted for by including the lagged response variable among the regressors. By conditioning on the sufficient statistics, we derive a pseudo conditional likelihood estimator of the structural parameters of the dynamic logit model, which is simple to compute. Asymptotic properties of this estimator are studied in detail. Simulation results show that the estimator is competitive in terms of efficiency with estimators recently proposed in the econometric literature.  相似文献   

10.
In this paper we consider the problem of estimating semiparametric panel data models with cross section dependence, where the individual-specific regressors enter the model nonparametrically whereas the common factors enter the model linearly. We consider both heterogeneous and homogeneous regression relationships when both the time and cross-section dimensions are large. We propose sieve estimators for the nonparametric regression functions by extending Pesaran’s (2006) common correlated effect (CCE) estimator to our semiparametric framework. Asymptotic normal distributions for the proposed estimators are derived and asymptotic variance estimators are provided. Monte Carlo simulations indicate that our estimators perform well in finite samples.  相似文献   

11.
Yueqin Wu  Yan Sun 《Metrika》2017,80(1):51-68
The linear model with spatial interaction has attracted huge attention in the past several decades. Different from most existing research which focuses on its estimation, we study its variable selection problem using the adaptive lasso. Our results show that the method can identify the true model consistently, and the resulting estimator can be efficient as the oracle estimator which is obtained when the zero coefficients in the model are known. Simulation studies show that the proposed methods perform very well.  相似文献   

12.
This paper extends the semiparametric efficient treatment of panel data models pursued by Park and Simar [Park, B.U., Simar, L., 1994. Efficient semiparametric estimation in stochastic frontier models. Journal of the American Statistical Association 89, 929–936] and Park et al. [Park, B.U., Sickles, R.C., Simar, L., 1998. Stochastic frontiers: a semiparametric approach. Journal of Econometrics 84, 273–301; Park, B.U., Sickles, R.C., Simar, L., 2003. Semiparametric efficient estimation of AR(1) panel data models. Journal of Econometrics 117, 279–309] to a dynamic panel setting. We develop a semiparametric efficient estimator under minimal assumptions when the panel model contains a lagged dependent variable. We apply this new estimator to analyze the structure of demand between city pairs for selected U.S. airlines during the period 1979 I–1992 IV.  相似文献   

13.
Longitudinal data sets with the structure T (time points) × N (subjects) are often incomplete because of data missing for certain subjects at certain time points. The EM algorithm is applied in conjunction with the Kalman smoother for computing maximum likelihood estimates of longitudinal LISREL models from varying missing data patterns. The iterative procedure uses the LISREL program in the M-step and the Kalman smoother in the E-step. The application of the method is illustrated by simulating missing data on a data set from educational research.  相似文献   

14.
Estimates of technical inefficiency based on fixed effects estimation of the stochastic frontier model with panel data are biased upward. Previous work has attempted to correct this bias using the bootstrap, but in simulations the bootstrap corrects only part of the bias. The usual panel jackknife is based on the assumption that the bias is of order T −1 and is similar to the bootstrap. We show that when there is a tie or a near tie for the best firm, the bias is of order T −1/2, not T −1, and this calls for a different form of the jackknife. The generalized panel jackknife is quite successful in removing the bias. However, the resulting estimates have a large variance.  相似文献   

15.
This paper investigates a class of penalized quantile regression estimators for panel data. The penalty serves to shrink a vector of individual specific effects toward a common value. The degree of this shrinkage is controlled by a tuning parameter λλ. It is shown that the class of estimators is asymptotically unbiased and Gaussian, when the individual effects are drawn from a class of zero-median distribution functions. The tuning parameter, λλ, can thus be selected to minimize estimated asymptotic variance. Monte Carlo evidence reveals that the estimator can significantly reduce the variability of the fixed-effect version of the estimator without introducing bias.  相似文献   

16.
Recent interest in statistical inference for panel data has focused on the problem of unobservable, individual-specific, random effects and the inconsistencies they introduce in estimation when they are correlated with other exogenous variables. Analysis of this problem has always assumed the variance components to be known. In this paper, we re-examine some of these questions in finite samples when the variance components must be estimated. In particular, when the effects are uncorrelated with other explanatory variables, we show that (i) the feasible Gauss-Markov estimator is more efficient than the within groups estimator for all but the fewest degrees of freedom and its variance is never more than 17% above the Cramer-Rao bound, (ii) the asymptotic approximation to the variance of the feasible Gauss-Markov estimator is similarly within 17% of the true variance but remains significantly smaller for moderately large samples sizes, and (iii) more efficient estimators for the variance components do not necessarily yield more efficient feasible Gauss-Markov estimators.  相似文献   

17.
The least absolute deviations (LAD) variable selection for linear models with randomly censored data is studied through the Lasso. The proposed procedure can select significant variables in the parameters. With appropriate selection of the tuning parameters, we establish the consistency of this procedure and the oracle property of the resulting estimators. Simulation studies are conducted to compare the proposed procedure with an inverse-censoring-probability weighted LAD LASSO-estimator.  相似文献   

18.
The paper considers the estimation of the coefficients of a single equation in the presence of dummy intruments. We derive pseudo ML and GMM estimators based on moment restrictions induced either by the structural form or by the reduced form of the model. The performance of the estimators is evaluated for the non-Gaussian case. We allow for heteroscedasticity. The asymptotic distributions are based on parameter sequences where the number of instruments increases at the same rate as the sample size. Relaxing the usual Gaussian assumption is shown to affect the normal asymptotic distributions. As a result also recently suggested new specification tests for the validity of instruments depend on Gaussianity. Monte Carlo simulations confirm the accuracy of the asymptotic approach.  相似文献   

19.
This paper considers nonparametric identification of nonlinear dynamic models for panel data with unobserved covariates. Including such unobserved covariates may control for both the individual-specific unobserved heterogeneity and the endogeneity of the explanatory variables. Without specifying the distribution of the initial condition with the unobserved variables, we show that the models are nonparametrically identified from two periods of the dependent variable YitYit and three periods of the covariate XitXit. The main identifying assumptions include high-level injectivity restrictions and require that the evolution of the observed covariates depends on the unobserved covariates but not on the lagged dependent variable. We also propose a sieve maximum likelihood estimator (MLE) and focus on two classes of nonlinear dynamic panel data models, i.e., dynamic discrete choice models and dynamic censored models. We present the asymptotic properties of the sieve MLE and investigate the finite sample properties of these sieve-based estimators through a Monte Carlo study. An intertemporal female labor force participation model is estimated as an empirical illustration using a sample from the Panel Study of Income Dynamics (PSID).  相似文献   

20.
This paper presents a statistical analysis of time series regression models for longitudinal data with and without lagged dependent variables under a variety of assumptions about the initial conditions of the processes being analyzed. The analysis demonstrates how the asymptotic properties of estimators of longitudinal models are critically dependent on the manner in which samples become large: by expanding the number of observations per person, holding the number of people fixed, or by expanding the number of persons, holding the number of observations per person fixed. The paper demonstrates which parameters can and cannot be identified from data produced by different sampling plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号