首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Treatment of toilet wastewater for reuse in a membrane bioreactor.   总被引:1,自引:0,他引:1  
Toilet wastewater is treated and reused on site at Europe's highest membrane bioreactor (MBR), located in a cable car mountain station in the ski resort of Zermatt. Negative impacts on the sensitive mountain environment are minimised by reusing close to 100% of the treated wastewater for toilet flushing. Besides 100% nitrogen removal, 80% of phosphorus was also eliminated. This paper presents operational results, optimisations of sludge management, decoloration and long-term maintenance of biomass in the very low-loaded summer season. From a global view the experiences and results of the project are of great importance, proposing a solution to a problem existing 100-fold in the Alps as well as in arid regions all over the world: reducing water consumption for sanitation by reuse.  相似文献   

2.
An anaerobic submerged membrane bioreactor (AnSMBR) on pilot-scale treating a mixture composed of municipal wastewater and glucose under mesophilic temperature conditions was operated for 206 days. The performance of the AnSMBR was evaluated at different fluxes, biomass concentrations and gas sparging velocities (GSV). GSV was used to control fouling. In addition, the AnSMBR was operated in cycles that included relaxation and backwashing phases. The increase in the transmembrane pressure (fouling rate) was measured under different operational conditions and was used to evaluate the stability of the process. The fouling rate could be controlled for a long period of time at a flux of 7 l m(-2) h(-1) with a GSV of 62 m/h and an average biomass concentration of 14.8 g TSS/L. The membrane was physically cleaned after 156 days of operation. The cleaning efficiency was almost 100% indicating that no irreversible fouling was developed inside the pores of the membrane. The COD removal efficiency was close to 90%. As in anaerobic processes, nutrients were not exposed to degradation and almost no pathogens were found in the effluent, hence the effluent could be used for irrigation in agriculture.  相似文献   

3.
A novel hydrogenotrophic denitrification system, which consisted of a sequencing batch membrane bioreactor, was evaluated for simultaneous removal of nitrate and soluble microbial products (SMP) from a synthetic groundwater feed. A hollow fiber membrane diffuser was used for bubble-less diffusion of hydrogen into the bioreactor under anoxic condition followed by aerobic SMP removal and biomass filtration. During the anoxic period, the nitrate loading of 0.328 kg N m(-3) d(-1) was completely denitrified to below detectable levels. A denitrification rate of 0.8 kg N m(-3) d(-1) was obtained at steady state biomass concentrations of 1,162 mg I(-1). During the aerobic period when biomass filtration was performed, 81% of SMP produced within the anoxic phase was retained by the membrane, 9% was biologically removed, 5% was passed through the membrane and 5% was discharged during the wasting of mixed liquor. The aerobic cycle was instrumental as it allowed for effective biomass filtration via membrane scouring and assisted in further reduction of effluent organic matter.  相似文献   

4.
A study was carried out on a hybrid (AS-SBF) membrane bioreactor (HMBR) for the municipal wastewater reclamation and reuse at Chengfengzhuang WWTP in Daqing City, Heilongjiang Province. It was found that the effects of DO and water temperature on performance of the HMBR was significant. Under the conditions of water temperature in range of 10-14 degrees C, pH of 6.6- 7.0, DO of 4-6 mg/l and HRT of 7 h, the HMBR exhibited removal efficiencies for CODcr, BOD5, NH3-N and TN of 96.7%, 98.9%, 93.7% and 60.5% respectively. The turbidity of effluent from HMBR was below 1 NTU. The effluent of HMBR meets the standard of wastewater reclamation for oil exploitation. PAC was added into the bioreactor at the second operating stage, in order to further research parameters variation. The flux was improved by 53.2%, compared to the membrane without PAC-addition, due to formation of a PAC pre-coat layer on the membrane surface, with lots of advantages such as larger granules, higher porosity, non-compressibility, higher filterability and easy removal, compared with pure biomass layer. In addition, the performance of HMBR was further improved, due to adsorption and degradation of SMPs, the average removal of CODcr and TN was further improved by 5.1% and 13.5% respectively. Biomass in the HMBR was quantitatively measured, of which the biofilm played a major role in pollutants removal.  相似文献   

5.
A pilot-scale modified submerged membrane bioreactor (SMBR) with the capacity of 18.1 m3d(-1) was developed on the basis of the principle of air-lift internal-loop reactor. Economical aeration intensity of the SMBR was determined as 96 m3m(-2)h(-1) according to hydrodynamic investigation. Corresponding economical air-flow rate was selected as the working air-flow rate in the long-term run. Under economical aeration intensity, the critical flux zone of the modified SMBR was as high as 30-35 Lm(-2)h(-1) when MLSS was less than 13 gL(-1). Therefore, a sub-critical flux of 30 Lm(-2)h(-1) was selected as the working membrane flux in the long-term run. Membrane fouling was effectively controlled by sub-critical flux operation and periodic on-line chemical cleaning in the long-term run. When the average influent CODCr, NH3-N and turbidity were 310 and 44.3 mgL(-1) and 161 NTU, respectively, the average permeate were 38.5 and 19.5 mgL(-1) and 0.96 NTU under hydraulic retention time (HRT) was only 2.8 h. Corresponding removal was 86, 58.2 and 99.4%. DO deficiency caused by high MLSS was demonstrated as the main reason for low NH3-N removal.  相似文献   

6.
The main aim of this work was to study the influence of the mixed liquor total solids (MLTS) concentration on membrane permeability (K(20)) in a submerged anaerobic membrane bioreactor (SAnMBR) pilot plant, which is equipped with industrial hollow-fibre membranes and treats urban wastewater. This pilot plant was operated at 33 °C and 70 days of SRT. Two different transmembrane fluxes (13.3 and 10 LMH) were tested with a gas sparging intensity of 0.23 Nm(3) m(-2)h(-1) (measured as Specific Gas Demand referred to membrane area). A linear dependence of K(20) on MLTS concentration was observed within a range of MLTS concentration from 13 to 32 g L(-1) and J(20) of 10 LMH. K(20) was maintained at sustainable values (about 100 LMH bar(-1)) even at high MLTS concentrations (up to 20 g L(-1)). In addition, several short-tests were carried out when the membranes were operated at high MLTS concentrations in order to assess the effect of the physical cleaning strategies (relaxation and back-flush) on membrane performance. It was observed that, with the applied gas sparging intensity, the duration of the relaxation stage did not critically affect the membrane performance. On the other hand, the required back-flush frequency was considerably affected by the MLTS concentration.  相似文献   

7.
The anaerobic treatment of sulphate-rich wastewater causes sulphate reducing bacteria (SRB) and methanogenic archaea (MA) to compete for the available substrate. The outcome is lower methane yield coefficient and, therefore, a reduction in the energy recovery potential of the anaerobic treatment. Moreover, in order to assess the overall chemical oxygen demand (COD) balance, it is necessary to determine how much dissolved CH(4) is lost in the effluent. The aim of this study is to develop a detailed and reliable method for assessing the COD mass balance and, thereby, to establish a more precise methane yield coefficient for anaerobic systems treating sulphate-rich wastewaters. A submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater was operated at 33 °C for an experimental period of 90 d, resulting in a high COD removal (approximately 84%) with a methane-enriched biogas of 54 ± 15% v/v. The novelty of the proposed methodology is to take into account the sulphide oxidation during COD determination, the COD removed only by MA and the dissolved CH(4) lost with the effluent. The obtained biomethanation yield (333 L CH(4) kg(-1) COD(REM MA)) is close to the theoretical value, which confirms the reliability of the proposed method.  相似文献   

8.
The operation of an activated sludge process at a paper mill (AIPM) in Hedera, Israel, was often characterized by disturbances. As part of a research and development project, a study on new biological treatment was initiated. The study included the operation of three pilot units: a. anaerobic treatment by upflow anaerobic sludge blanket (UASB); b. aerobic treatment by two pilot units including activated sludge and membrane bioreactor (MBR), which have been operated in parallel for comparison reasons. The pilot plant working on anaerobic treatment performed COD reduction from 2,365 to 755 mg/L, expressed as average values. Based on the pilot study, a full scale anaerobic treatment system has been erected. During a period of 100 days, after achieving steady state, the MBR system provided steady operation performance, while the activated sludge produced effluent characterized by oscillatory qualities. The following results, based on average values, indicate much lower suspended solids concentrations in the MBR effluent, 2.5 mg/L, as compared to 25 mg/L in the activated sludge. The ability to develop and maintain a concentration of over 11,000 mg/L of mixed liquor volatile suspended solids in the MBR enabled an intensive bioprocess at relatively high cell residence time. This study demonstrates that the anaerobic process, followed by aerobic MBR can provide effluent of high quality which can be considered for economic reuse in the paper mill industry.  相似文献   

9.
从理论上分析了一体式膜生物反应器内曝气量与污水流量、反应器设计高度、主副腔过流面积的关系,膜外污染错流临界流速与抽吸压力及主腔宽度的关系,膜管内污染的临界速度与膜管径、膜壁吸力的关系,并得出采用化学方法消除膜污染的原理。  相似文献   

10.
This study focuses on the practical application of high concentration powdered activated carbon coupled membrane bio-reactor to domestic wastewater reclamation. The study was conducted in three parts, such as analysis of secondary domestic wastewater effluent, design and operation parameter evaluation and reclaimed water quality estimation for stream restoration. The organic concentration was 25.2-80.2 mgCOD(Cr)/L for the effluent of three domestic wastewater treatment plants. Around 50-75% of the COD was low molecular substances less than 1,000 which were quite biodegradable. The sawdust PAC was estimated to be proper adsorbent for the organics in the secondary effluents. Its Freundlich constant, K value was 5.847 and 1/n, 0.36. Using a system consists of single reactor with high concentration PAC (80 g/L) and submerged hollow fiber MF membrane module with nominal pore size of 0.1 microm, design and operation parameters were obtained, such as HRT of the bioreactor (2.5 hr), PAC concentration (80 g/L), the initial flux (less than 0.5 m/day) and intermittent suction cycle (12 min. suction and 3 min. idling). Organic removal by the system was high enough to produce reclaimed water for urban stream restoration The effluent organic concentration was at the level of 2 mg/L in terms of TOC (around 5 mg/L as COD(Cr)). Substances with molecular weight cut off < 1,000 were removed mostly by adsorption and biodegradation. Those above 1,000 were rejected at PAC cake layer on the membrane and gradually degraded by microorganisms during extended contact.  相似文献   

11.
一体式厌氧平板膜生物反应器处理酒厂废水的研究   总被引:9,自引:0,他引:9  
研究了容积负荷、水力停留时间对一体式厌氧平板膜生物反应器处理高浓度酒厂废水效果的影响。试验结果表明,CODCr负荷为5.2~8 kg/(m3·d),水力停留时间3~5 d时,CODCr平均去除率为95%。正常运行时的碱度与VFA的比为2.5~4.5。当CODCr负荷超过10 kg/(m3·d),系统 VFA出现累积,COD去除率下降。水力停留时间对一体式厌氧平板膜生物反应器处理效果有重要影响,水力停留时间应大于70 h。  相似文献   

12.
Wine production is seasonal, and thus the wastewater flow and its chemical oxygen demand (COD) concentrations greatly vary during the vintage and non-vintage periods, as well as being dependant on the winemaking technologies used, e.g. red, white or special wines production. Due to this seasonal high variability in terms of organic matter load, the use of membrane biological reactors (MBR) could be suitable for the treatment of such wastewaters. MBR offers several benefits, such as rapid start up, good effluent quality, low footprint area, absence of voluminous secondary settler and its operation is not affected by the settling properties of the sludge. A pilot scale hollow fibre MBR system of 220 L was fed by adequately diluting white wine with tap water, simulating wastewaters generated in wineries. The COD in the influent ranged between 1,000 and 4,000 mg/L. In less than 10 days after the start up, the system showed a good COD removal efficiency. The COD elimination percentage was always higher than 97% regardless of the organic loading rate (OLR) applied (0.5-2.2 kg COD/m3 d), with COD concentrations in the effluent ranging between 20 and 100 mg/L. Although the biomass concentration in the reactor increased from 0.5 to 8.6 g VSS/L, the suspended solids concentration in the effluent was negligible. Apparent biomass yield was estimated in 0.14 g VSS/g COD.  相似文献   

13.
MBR的脱氮除磷工艺研究   总被引:2,自引:0,他引:2  
采用厌氧/缺氧池/好氧MBR工艺处理模拟的城市生活污水,就系统主要的运行参数对氮磷去除的影响进行了研究.结果表明:TN、TP、NH3-N去除率分别达到80%、90%、95%以上,出水各项指标完全满足城市杂用水水质标准的要求.  相似文献   

14.
A pilot-scale fluidised pellet bed (FPB) bioreactor, which combines chemical coagulation, biological degradation, particle pelletisation and separation in one unit, was applied for onsite wastewater treatment and reuse. As a result of rational use of inorganic coagulant and organic polymer and moderate mechanical agitation, spherical particles were generated in the upflow column and a well-fluidised bed was formed. With a continuous supply of dissolved oxygen through a recycling loop, an aerobic condition was kept in the bottom section of the FPB column. Under such conditions the pellets in the FPB column showed the following characteristics: (1) compact structure and high density; (2) rich in microorganisms; and (3) high MLSS and MLVSS concentrations. Therefore, the FPB bioreactor achieved more than 90% removal of SS, COD, BOD and TP from raw domestic wastewater within a total hydraulic retention time (HRT) of only about 30 minutes. It also showed nitrification and denitrification ability and the TN removal could be about 50% as the recycling ratio was increased to 1:1. The treated water quality is generally competitive with the secondary effluent from a conventional activated sludge process. With these advantages the FPB bioreactor is recommendable as a compact system for onsite wastewater treatment and reuse.  相似文献   

15.
The objective of this study is to investigate solids concentration and extracellular polymeric substance (EPS) effects on the membrane fouling in the submerged membrane bioreactor. The relationship between the solids retention time (SRT) and the amount of EPS is observed in three lab-scale MBRs. Additionally, the EPS effect on membrane fouling is quantified by calculating the specific cake resistance (alpha) using an unstirred batch cell test. By observing the sludge over a long period under various SRT scenarios, a wide range of EPS and membrane fouling data is obtained. These observations provide sufficient evidence of the functional relationship between SRT, EPS and alpha. As SRT decreases, the amount of EPS bound in sludge floc becomes higher in the high MLSS condition (> 5,000 mg/L). The amount of EPS in the sludge floc has positive influence on alpha. A sigmoid trend between EPS and alpha is observed and the functional relationship obtained by dimensional analysis is consistent with the experimental results.  相似文献   

16.
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.  相似文献   

17.
Sludge characteristics of a submerged membrane bioreactor (MBR) and an activated sludge process (AS) were compared, during a first phase at the same operating conditions (low MLSS and conventional SRT) and in a second phase with a high sludge retention time (SRT) in the membrane bioreactor. During the first phase, a bimodal flocs size distribution was observed in the MBR with simultaneously a macro-flocs population (240 microm) bigger than the flocs of activated sludge due to the absence of recirculating pump, and also more microflocs (1 to 15 microm) and free suspended cells retained by the membrane. It is shown that the membrane leads to an accumulation of proteins and polysaccharides in the sludge supernatant which is probably responsible for the high fouling propensity of the sludge during the starting period of MBR. These compounds are partially degraded after 50 to 60 days of operation. In the first phase respirometric experiments didn't demonstrate a significant difference in the maximal removal rates of either MBR or AS biomass (with excess substrate), except in the dynamic period during which the membrane retention gave an advantage by increasing the biomass activity. On the other hand, the respirometry shows that the half saturation constant for nitrification was significantly higher in the MBR process, suggesting higher substrate transfer limitation. During the last phase, it is shown that an increase of SRT from 9 to 106 days leads to a diminution of average macro-flocs size in the MBR from about 240 to 70 microm. With the SRT increase, modification in the organic compounds is also observed (proteins, polysaccharides and COD) in the sludge supernatant. Increasing the SRT from 9 to 40 days seems to slightly reduce the level of organic compounds (probable biodegradation), but the concentrations increased when SRT changes from 40 days to 106 days (probable accumulation of non biodegradable compounds).  相似文献   

18.
This paper describes the demonstrative scale application of a membrane biological reactor (MBR) for low loaded domestic wastewater with low attitude to biological treatment (carbon/nitrogen approximately 5). The biological process was managed by the automatically controlled alternate cycles allowing for re-use purposes with a remarkable reduction of the operational costs. The global process evaluation revealed the system capability of obtaining high nitrogen removal (effective nitrogen removal of 69%) thanks to its high flexibility related to the hourly loading fluctuation. Moreover, high removal of heavy metals and polycyclic aromatic hydrocarbons (PAH) was obtained due to the perfect retention capability of the membranes. In-depth studies were conducted to determine the process behaviour for activated sludge over aeration and with addition of exogenous carbon. Limitation of sludge over aeration and energy savings were observed with a gradient air supplying method. The addition of exogenous carbon (acetic acid up to carbon/nitrogen approximately 9) led to complete nitrogen removal (Ed = 96%) and permitted biological phosphorus uptake. In conclusion, it was been found that the coupled process alternated cycles-MBR had the capacity to remove COD, BOD, N, P and suspended solids, as well as heavy metals and organic micropollutants, resulting in high quality effluent suitable for re-use purposes.  相似文献   

19.
Nanofiltration (NF) is considered as one of the most promising separation technologies to obtain a very good-quality permeate in water and wastewater treatment. A submerged NF membrane bioreactor (NF MBR) using polyamide membranes was tested for a long-term operation and the performance of the NF MBR was compared with that of a microfiltration MBR (MF MBR). Total organic carbon (TOC) concentration in the permeate of the NF MBR ranged from 0.5 to 2.0 mg/L, whereas that of the MF MBR showed an average of 5 mg/L. This could be explained by the tightness of the NF membrane. Although the concentration of organic matter in the supernatant of the NF MBR was higher than that in the permeate due to high rejection by the NF membrane, the NF MBR showed excellent treatment efficiency and satisfactory operational stability for a long-term operation.  相似文献   

20.
Membrane separation technology represents an alternative way to achieve biomass retention in anaerobic bioreactors for wastewater treatment. Due to high biomass concentrations of anaerobic reactors, cake formation is likely to represent a major cause of flux decline. In the presented research, experiments are performed on the effect of biomass concentration and level of gas sparging on the hydraulic capacity of a submerged anaerobic membrane bioreactor. Both parameters significantly affected the hydraulic capacity, with biomass exerting the most pronounced effect. After 50 days of continuous operation the critical flux remained virtually unchanged, despite an increase in membrane resistance, suggesting that biomass characteristics and hydraulic conditions determine the bio-layer formation rather than the membrane's fouling level. The concept of bio-layer management is introduced to describe the programmed combination of actions performed in order to control the formation of biomass layer over membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号