首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the characterization of arbitrage-free dynamic stochastic models for the equity markets when Itô stochastic differential equations are used to model the dynamics of a set of basic instruments including, but not limited to, the underliers. We study these market models in the framework of the HJM philosophy originally articulated for Treasury bond markets. The main thrust of the paper is to characterize absence of arbitrage by a drift condition and a spot consistency condition for the coefficients of the local volatility dynamics.  相似文献   

2.
Finite dimensional Markovian HJM term structure models provide ideal settings for the study of term structure dynamics and interest rate derivatives where the flexibility of the HJM framework and the tractability of Markovian models coexist. Consequently, these models became the focus of a series of papers including Carverhill (1994), Ritchken and Sankarasubramanian (1995), Bhar and Chiarella (1997), Inui and Kijima (1998), de Jong and Santa-Clara (1999), Björk and Svensson (2001) and Chiarella and Kwon (2001a). However, these models usually required the introduction of a large number of state variables which, at first sight, did not appear to have clear links to the market observed quantities, and the explicit realisations of the forward rate curve in terms of the state variables were unclear. In this paper, it is shown that the forward rate curves for these models are affine functions of the state variables, and conversely that the state variables in these models can be expressed as affine functions of a finite number of forward rates or yields. This property is useful, for example, in the estimation of model parameters. The paper also provides explicit formulae for the bond prices in terms of the state variables that generalise the formulae given in Inui and Kijima (1998), and applies the framework to obtain affine representations for a number of popular interest rate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号