首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Coherent, convex, and monetary risk measures were introduced in a setup where uncertain outcomes are modeled by bounded random variables. In this paper, we study such risk measures on Orlicz hearts. This includes coherent, convex, and monetary risk measures on Lp -spaces for  1 ≤ p < ∞  and covers a wide range of interesting examples. Moreover, it allows for an elegant duality theory. We prove that every coherent or convex monetary risk measure on an Orlicz heart which is real-valued on a set with non-empty algebraic interior is real-valued on the whole space and admits a robust representation as maximal penalized expectation with respect to different probability measures. We also show that penalty functions of such risk measures have to satisfy a certain growth condition and that our risk measures are Luxemburg-norm Lipschitz-continuous in the coherent case and locally Luxemburg-norm Lipschitz-continuous in the convex monetary case. In the second part of the paper we investigate cash-additive hulls of transformed Luxemburg-norms and expected transformed losses. They provide two general classes of coherent and convex monetary risk measures that include many of the currently known examples as special cases. Explicit formulas for their robust representations and the maximizing probability measures are given.  相似文献   

2.
The optimized certainty equivalent (OCE) is a decision theoretic criterion based on a utility function, that was first introduced by the authors in 1986. This paper re-examines this fundamental concept, studies and extends its main properties, and puts it in perspective to recent concepts of risk measures. We show that the negative of the OCE naturally provides a wide family of risk measures that fits the axiomatic formalism of convex risk measures. Duality theory is used to reveal the link between the OCE and the φ-divergence functional (a generalization of relative entropy), and allows for deriving various variational formulas for risk measures. Within this interpretation of the OCE, we prove that several risk measures recently analyzed and proposed in the literature (e.g., conditional value of risk, bounded shortfall risk) can be derived as special cases of the OCE by using particular utility functions. We further study the relations between the OCE and other certainty equivalents, providing general conditions under which these can be viewed as coherent/convex risk measures. Throughout the paper several examples illustrate the flexibility and adequacy of the OCE for building risk measures.  相似文献   

3.
A REPRESENTATION RESULT FOR CONCAVE SCHUR CONCAVE FUNCTIONS   总被引:3,自引:0,他引:3  
A representation result is provided for concave Schur concave functions on   L (Ω)  . In particular, it is proven that any monotone concave Schur concave weakly upper semicontinuous function is the infinimum of a family of nonnegative affine combinations of Choquet integrals with respect to a convex continuous distortion of the underlying probability. The method of proof is based on the concave Fenchel transform and on Hardy and Littlewood's inequality. Under the assumption that the probability space is nonatomic, concave, weakly upper semicontinuous, law-invariant functions are shown to coincide with weakly upper semicontinuous concave Schur concave functions. A representation result is, thus, obtained for weakly upper semicontinuous concave law-invariant functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号