首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a general class of models and a unified Bayesian inference methodology for flexibly estimating the density of a response variable conditional on a possibly high-dimensional set of covariates. Our model is a finite mixture of component models with covariate-dependent mixing weights. The component densities can belong to any parametric family, with each model parameter being a deterministic function of covariates through a link function. Our MCMC methodology allows for Bayesian variable selection among the covariates in the mixture components and in the mixing weights. The model’s parameterization and variable selection prior are chosen to prevent overfitting. We use simulated and real data sets to illustrate the methodology.  相似文献   

2.
This paper develops methods of Bayesian inference in a sample selection model. The main feature of this model is that the outcome variable is only partially observed. We first present a Gibbs sampling algorithm for a model in which the selection and outcome errors are normally distributed. The algorithm is then extended to analyze models that are characterized by nonnormality. Specifically, we use a Dirichlet process prior and model the distribution of the unobservables as a mixture of normal distributions with a random number of components. The posterior distribution in this model can simultaneously detect the presence of selection effects and departures from normality. Our methods are illustrated using some simulated data and an abstract from the RAND health insurance experiment.  相似文献   

3.
This paper extends the conventional Bayesian mixture of normals model by permitting state probabilities to depend on observed covariates. The dependence is captured by a simple multinomial probit model. A conventional and rapidly mixing MCMC algorithm provides access to the posterior distribution at modest computational cost. This model is competitive with existing econometric models, as documented in the paper's illustrations. The first illustration studies quantiles of the distribution of earnings of men conditional on age and education, and shows that smoothly mixing regressions are an attractive alternative to nonBayesian quantile regression. The second illustration models serial dependence in the S&P 500 return, and shows that the model compares favorably with ARCH models using out of sample likelihood criteria.  相似文献   

4.
We develop a Bayesian semi-parametric approach to the instrumental variable problem. We assume linear structural and reduced form equations, but model the error distributions non-parametrically. A Dirichlet process prior is used for the joint distribution of structural and instrumental variable equations errors. Our implementation of the Dirichlet process prior uses a normal distribution as a base model. It can therefore be interpreted as modeling the unknown joint distribution with a mixture of normal distributions with a variable number of mixture components. We demonstrate that this procedure is both feasible and sensible using actual and simulated data. Sampling experiments compare inferences from the non-parametric Bayesian procedure with those based on procedures from the recent literature on weak instrument asymptotics. When errors are non-normal, our procedure is more efficient than standard Bayesian or classical methods.  相似文献   

5.
Tamás Rudas 《Metrika》1999,50(2):163-172
A measure of the fit of a statistical model can be obtained by estimating the relative size of the largest fraction of the population where a distribution belonging to the model may be valid. This is the mixture index of fit that was suggested for models for contingency tables by Rudas, Clogg, Lindsay (1994) and it is extended here for models involving continuous observations. In particular, the approach is applied to regression models with normal and uniform error structures. Best fit, as measured by the mixture index of fit, is obtained with minimax estimation of the regression parameters. Therefore, whenever minimax estimation is used for these problems, the mixture index of fit provides a natural approach for measuring model fit and for variable selection. Received: September 1997  相似文献   

6.
Many predictors employed in forecasting macroeconomic and finance variables display a great deal of persistence. Tests for determining the usefulness of these predictors are typically oversized, overstating their importance. Similarly, hypothesis tests on cointegrating vectors will typically be oversized if there is not an exact unit root. This paper uses a control variable approach where adding stationary covariates with certain properties to the model can result in asymptotic normal inference for prediction regressions and cointegration vector estimates in the presence of possibly non-unit root trending covariates. The properties required for this result are derived and discussed.  相似文献   

7.
Model specification for state space models is a difficult task as one has to decide which components to include in the model and to specify whether these components are fixed or time-varying. To this aim a new model space MCMC method is developed in this paper. It is based on extending the Bayesian variable selection approach which is usually applied to variable selection in regression models to state space models. For non-Gaussian state space models stochastic model search MCMC makes use of auxiliary mixture sampling. We focus on structural time series models including seasonal components, trend or intervention. The method is applied to various well-known time series.  相似文献   

8.
This paper develops a new method for dealing with endogenous selection. The usual instrumental strategy based on the independence between the outcome and the instrument is likely to fail when selection is directly driven by the dependent variable. Instead, we suggest to rely on the independence between the instrument and the selection variable, conditional on the outcome. This approach may be particularly suitable for nonignorable nonresponse, binary models with missing covariates or Roy models with an unobserved sector. The nonparametric identification of the joint distribution of the variables is obtained under a completeness assumption, which has been used recently in several nonparametric instrumental problems. Even if the conditional independence between the instrument and the selection variable fails to hold, the approach provides sharp bounds on parameters of interest under weaker monotonicity conditions. Apart from identification, nonparametric and parametric estimations are also considered. Finally, the method is applied to estimate the effect of grade retention in French primary schools.  相似文献   

9.
This paper investigates the benefits of internet search data in the form of Google Trends for nowcasting real U.S. GDP growth in real time through the lens of mixed frequency Bayesian Structural Time Series (BSTS) models. We augment and enhance both model and methodology to make these better amenable to nowcasting with large number of potential covariates. Specifically, we allow shrinking state variances towards zero to avoid overfitting, extend the SSVS (spike and slab variable selection) prior to the more flexible normal-inverse-gamma prior which stays agnostic about the underlying model size, as well as adapt the horseshoe prior to the BSTS. The application to nowcasting GDP growth as well as a simulation study demonstrate that the horseshoe prior BSTS improves markedly upon the SSVS and the original BSTS model with the largest gains in dense data-generating-processes. Our application also shows that a large dimensional set of search terms is able to improve nowcasts early in a specific quarter before other macroeconomic data become available. Search terms with high inclusion probability have good economic interpretation, reflecting leading signals of economic anxiety and wealth effects.  相似文献   

10.
In many surveys, imputation procedures are used to account for non‐response bias induced by either unit non‐response or item non‐response. Such procedures are optimised (in terms of reducing non‐response bias) when the models include covariates that are highly predictive of both response and outcome variables. To achieve this, we propose a method for selecting sets of covariates used in regression imputation models or to determine imputation cells for one or more outcome variables, using the fraction of missing information (FMI) as obtained via a proxy pattern‐mixture (PMM) model as the key metric. In our variable selection approach, we use the PPM model to obtain a maximum likelihood estimate of the FMI for separate sets of candidate imputation models and look for the point at which changes in the FMI level off and further auxiliary variables do not improve the imputation model. We illustrate our proposed approach using empirical data from the Ohio Medicaid Assessment Survey and from the Service Annual Survey.  相似文献   

11.
We investigate the finite sample properties of a large number of estimators for the average treatment effect on the treated that are suitable when adjustment for observed covariates is required, like inverse probability weighting, kernel and other variants of matching, as well as different parametric models. The simulation design used is based on real data usually employed for the evaluation of labour market programmes in Germany. We vary several dimensions of the design that are of practical importance, like sample size, the type of the outcome variable, and aspects of the selection process. We find that trimming individual observations with too much weight as well as the choice of tuning parameters are important for all estimators. A conclusion from our simulations is that a particular radius matching estimator combined with regression performs best overall, in particular when robustness to misspecifications of the propensity score and different types of outcome variables is considered an important property.  相似文献   

12.
Microeconometric treatments of discrete choice under risk are typically homoscedastic latent variable models. Specifically, choice probabilities are given by preference functional differences (given by expected utility, rank-dependent utility, etc.) embedded in cumulative distribution functions. This approach has a problem: Estimated utility function parameters meant to represent agents’ degree of risk aversion in the sense of Pratt (1964) do not imply a suggested “stochastically more risk averse” relation within such models. A new heteroscedastic model called “contextual utility” remedies this, and estimates in one data set suggest it explains (and especially predicts) as well as or better than other stochastic models.  相似文献   

13.
In this paper nonparametric instrumental variable estimation of local average treatment effects (LATE) is extended to incorporate covariates. Estimation of LATE is appealing since identification relies on much weaker assumptions than the identification of average treatment effects in other nonparametric instrumental variable models. Including covariates in the estimation of LATE is necessary when the instrumental variable itself is confounded, such that the IV assumptions are valid only conditional on covariates. Previous approaches to handle covariates in the estimation of LATE relied on parametric or semiparametric methods. In this paper, a nonparametric estimator for the estimation of LATE with covariates is suggested that is root-n asymptotically normal and efficient.  相似文献   

14.
Regression analyses of cross-country economic growth data are complicated by two main forms of model uncertainty: the uncertainty in selecting explanatory variables and the uncertainty in specifying the functional form of the regression function. Most discussions in the literature address these problems independently, yet a joint treatment is essential. We present a new framework that makes such a joint treatment possible, using flexible nonlinear models specified by Gaussian process priors and addressing the variable selection problem by means of Bayesian model averaging. Using this framework, we extend the linear model to allow for parameter heterogeneity of the type suggested by new growth theory, while taking into account the uncertainty in selecting explanatory variables. Controlling for variable selection uncertainty, we confirm the evidence in favor of parameter heterogeneity presented in several earlier studies. However, controlling for functional form uncertainty, we find that the effects of many of the explanatory variables identified in the literature are not robust across countries and variable selections.  相似文献   

15.
Concomitant variables in finite mixture models   总被引:1,自引:0,他引:1  
  相似文献   

16.
In a sample selection or treatment effects model, common unobservables may affect both the outcome and the probability of selection in unknown ways. This paper shows that the distribution function of potential outcomes, conditional on covariates, can be identified given an observed variable VV that affects the treatment or selection probability in certain ways and is conditionally independent of the error terms in a model of potential outcomes. Selection model estimators based on this identification are provided, which take the form of simple weighted averages, GMM, or two stage least squares. These estimators permit endogenous and mismeasured regressors. Empirical applications are provided to estimation of a firm investment model and a schooling effects on wages model.  相似文献   

17.
We consider the problem of variable selection in linear regression models. Bayesian model averaging has become an important tool in empirical settings with large numbers of potential regressors and relatively limited numbers of observations. We examine the effect of a variety of prior assumptions on the inference concerning model size, posterior inclusion probabilities of regressors and on predictive performance. We illustrate these issues in the context of cross‐country growth regressions using three datasets with 41–67 potential drivers of growth and 72–93 observations. Finally, we recommend priors for use in this and related contexts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We focus on Bayesian model selection for the variable selection problem in large model spaces. The challenge is to search the huge model space adequately, while accurately approximating model posterior probabilities for the visited models. The issue of choice of prior distributions for the visited models is also important.  相似文献   

19.
This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure valid posterior inference despite the fact that the number of parameters is greater than the number of observations. We develop an empirical Bayesian approach that allows us to estimate the prior smoothing hyperparameters from the data. An advantage of our semiparametric model is that it is written as a seemingly unrelated regressions model with independent normal–Wishart prior. Since this model is a common one, textbook results for posterior inference, model comparison, prediction and posterior computation are immediately available. We use this model in an application involving a two‐equation structural model drawn from the labour and returns to schooling literatures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we propose an approach to both estimate and select unknown smooth functions in an additive model with potentially many functions. Each function is written as a linear combination of basis terms, with coefficients regularized by a proper linearly constrained Gaussian prior. Given any potentially rank deficient prior precision matrix, we show how to derive linear constraints so that the corresponding effect is identified in the additive model. This allows for the use of a wide range of bases and precision matrices in priors for regularization. By introducing indicator variables, each constrained Gaussian prior is augmented with a point mass at zero, thus allowing for function selection. Posterior inference is calculated using Markov chain Monte Carlo and the smoothness in the functions is both the result of shrinkage through the constrained Gaussian prior and model averaging. We show how using non-degenerate priors on the shrinkage parameters enables the application of substantially more computationally efficient sampling schemes than would otherwise be the case. We show the favourable performance of our approach when compared to two contemporary alternative Bayesian methods. To highlight the potential of our approach in high-dimensional settings we apply it to estimate two large seemingly unrelated regression models for intra-day electricity load. Both models feature a variety of different univariate and bivariate functions which require different levels of smoothing, and where component selection is meaningful. Priors for the error disturbance covariances are selected carefully and the empirical results provide a substantive contribution to the electricity load modelling literature in their own right.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号