首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Using an expansion of the transition density function of a one‐dimensional time inhomogeneous diffusion, we obtain the first‐ and second‐order terms in the short time asymptotics of European call option prices. The method described can be generalized to any order. We then use these option prices approximations to calculate the first‐ and second‐order deviation of the implied volatility from its leading value and obtain approximations which we numerically demonstrate to be highly accurate.  相似文献   

2.
We study specific nonlinear transformations of the Black–Scholes implied volatility to show remarkable properties of the volatility surface. No arbitrage bounds on the implied volatility skew are given. Pricing formulas for European payoffs are given in terms of the implied volatility smile.  相似文献   

3.
In the stochastic volatility framework of Hull and White (1987), we characterize the so-called Black and Scholes implied volatility as a function of two arguments the ratio of the strike to the underlying asset price and the instantaneous value of the volatility By studying the variation m the first argument, we show that the usual hedging methods, through the Black and Scholes model, lead to an underhedged (resp. overhedged) position for in-the-money (resp out-of the-money) options, and a perfect partial hedged position for at the-money options These results are shown to be closely related to the smile effect, which is proved to be a natural consequence of the stochastic volatility feature the deterministic dependence of the implied volatility on the underlying volatility process suggests the use of implied volatility data for the estimation of the parameters of interest A statistical procedure of filtering (of the latent volatility process) and estimation (of its parameters) is shown to be strongly consistent and asymptotically normal.  相似文献   

4.
We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of a geometric Brownian motion and the density of the stock price process in the Hull–White model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the price of an Asian option are obtained.  相似文献   

5.
We consider the non‐Gaussian stochastic volatility model of Barndorff‐Nielsen and Shephard for the exponential mean‐reversion model of Schwartz proposed for commodity spot prices. We analyze the properties of the stochastic dynamics, and show in particular that the log‐spot prices possess a stationary distribution defined as a normal variance‐mixture model. Furthermore, the stochastic volatility model allows for explicit forward prices, which may produce a hump structure inherited from the mean‐reversion of the stochastic volatility. Although the spot price dynamics has continuous paths, the forward prices will have a jump dynamics, where jumps occur according to changes in the volatility process. We compare with the popular Heston stochastic volatility dynamics, and show that the Barndorff‐Nielsen and Shephard model provides a more flexible framework in describing commodity spot prices. An empirical example on UK spot data is included.  相似文献   

6.
We consider a class of asset pricing models, where the risk‐neutral joint process of log‐price and its stochastic variance is an affine process in the sense of Duffie, Filipovic, and Schachermayer. First we obtain conditions for the price process to be conservative and a martingale. Then we present some results on the long‐term behavior of the model, including an expression for the invariant distribution of the stochastic variance process. We study moment explosions of the price process, and provide explicit expressions for the time at which a moment of given order becomes infinite. We discuss applications of these results, in particular to the asymptotics of the implied volatility smile, and conclude with some calculations for the Heston model, a model of Bates and the Barndorff‐Nielsen–Shephard model.  相似文献   

7.
Using positive semidefinite supOU (superposition of Ornstein–Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modeling long range dependence effects. The finiteness of moments and the second‐order structure of the volatility, the log‐ returns, as well as their “squares” are discussed in detail. Moreover, we give several examples in which long memory effects occur and study how the model as well as the simple Ornstein–Uhlenbeck type stochastic volatility model behave under linear transformations. In particular, the models are shown to be preserved under invertible linear transformations. Finally, we discuss how (sup)OU stochastic volatility models can be combined with a factor modeling approach.  相似文献   

8.
We consider the pricing of options written on the quadratic variation of a given stock price process. Using the Laplace transform approach, we determine semi‐explicit formulas in general affine models allowing for jumps, stochastic volatility, and the leverage effect. Moreover, we show that the joint dynamics of the underlying stock and a corresponding variance swap again are of affine form. Finally, we present a numerical example for the Barndorff‐Nielsen and Shephard model with leverage. In particular, we study the effect of approximating the quadratic variation with its predictable compensator.  相似文献   

9.
This paper solves the mean–variance hedging problem in Heston's model with a stochastic opportunity set moving systematically with the volatility of stock returns. We allow for correlation between stock returns and their volatility (so-called leverage effect). Our contribution is threefold: using a new concept of opportunity-neutral measure we present a simplified strategy for computing a candidate solution in the correlated case. We then go on to show that this candidate generates the true variance-optimal martingale measure; this step seems to be partially missing in the literature. Finally, we derive formulas for the hedging strategy and the hedging error.  相似文献   

10.
We present some further developments in the construction and classification of new solvable one‐dimensional diffusion models having transition densities, and other quantities that are fundamental to derivatives pricing, representable in analytically closed form. Our approach is based on so‐called diffusion canonical transformations that produce a large class of multiparameter nonlinear local volatility diffusion models that are mapped onto various simpler diffusions. Using an asymptotic analysis, we arrive at a rigorous boundary classification as well as a characterization with respect to probability conservation and the martingale property of the newly constructed diffusions. Specifically, we analyze and classify in detail four main families of driftless regular diffusion models that arise from the underlying squared Bessel process (the Bessel family), Cox–Ingersoll–Ross process (the confluent hypergeometric family), the Ornstein‐Uhlenbeck diffusion (the OU family), and the Jacobi diffusion (the hypergeometric family). We show that the Bessel family is a superset of the constant elasticity of variance model without drift. The Bessel family, in turn, is nested by the confluent hypergeometric family. For these two families we find further subfamilies of conservative strict supermartingales and nonconservative martingales with an exit boundary. For the new classes of nonconservative regular diffusions we also derive analytically exact first exit time densities that are given in terms of generalized inverse Gaussians and extensions. As for the two other new models, we show that the OU family of processes are conservative strict martingales, whereas the Jacobi family are nonconservative nonmartingales. Considered as asset price diffusion models, we also show that these models demonstrate a wide range of local volatility shapes and option implied volatility surfaces that include various pronounced skew and smile patterns.  相似文献   

11.
David  Hobson 《Mathematical Finance》2004,14(4):537-556
The aim of this paper is to study the minimal entropy and variance-optimal martingale measures for stochastic volatility models. In particular, for a diffusion model where the asset price and volatility are correlated, we show that the problem of determining the q -optimal measure can be reduced to finding a solution to a representation equation. The minimal entropy measure and variance-optimal measure are seen as the special cases   q = 1  and   q = 2  respectively. In the case where the volatility is an autonomous diffusion we give a stochastic representation for the solution of this equation. If the correlation ρ between the traded asset and the autonomous volatility satisfies  ρ2 < 1/ q   , and if certain smoothness and boundedness conditions on the parameters are satisfied, then the q -optimal measure exists. If  ρ2≥ 1/ q   , then the q -optimal measure may cease to exist beyond a certain time horizon. As an example we calculate the q -optimal measure explicitly for the Heston model.  相似文献   

12.
We compute zero‐coupon bond prices in the Dothan model by solving the associated PDE using integral representations of heat kernels and Hartman–Watson distributions. We obtain several integral formulas for the price P(t, T) at time t > 0 of a bond with maturity T > 0 that complete those of the original paper of Dothan, which are shown not to always satisfy the boundary condition P(T, T) = 1 .  相似文献   

13.
MODELING THE RECOVERY RATE IN A REDUCED FORM MODEL   总被引:1,自引:0,他引:1  
This paper provides a model for the recovery rate process in a reduced form model. After default, a firm continues to operate, and the recovery rate is determined by the value of the firm's assets relative to its liabilities. The debt recovers a different magnitude depending upon whether or not the firm enters insolvency and bankruptcy. Although this recovery rate process is similar to that used in a structural model, the reduced form approach is maintained by utilizing information reduction in the sense of Guo, Jarrow, and Zeng. Our model is able to provide analytic expressions for a firm's default intensity, bankruptcy intensity, and zero-coupon bond prices both before and after default.  相似文献   

14.
MODEL UNCERTAINTY AND ITS IMPACT ON THE PRICING OF DERIVATIVE INSTRUMENTS   总被引:4,自引:0,他引:4  
Rama  Cont 《Mathematical Finance》2006,16(3):519-547
Uncertainty on the choice of an option pricing model can lead to "model risk" in the valuation of portfolios of options. After discussing some properties which a quantitative measure of model uncertainty should verify in order to be useful and relevant in the context of risk management of derivative instruments, we introduce a quantitative framework for measuring model uncertainty in the context of derivative pricing. Two methods are proposed: the first method is based on a coherent risk measure compatible with market prices of derivatives, while the second method is based on a convex risk measure. Our measures of model risk lead to a premium for model uncertainty which is comparable to other risk measures and compatible with observations of market prices of a set of benchmark derivatives. Finally, we discuss some implications for the management of "model risk."  相似文献   

15.
This paper develops a novel class of hybrid credit‐equity models with state‐dependent jumps, local‐stochastic volatility, and default intensity based on time changes of Markov processes with killing. We model the defaultable stock price process as a time‐changed Markov diffusion process with state‐dependent local volatility and killing rate (default intensity). When the time change is a Lévy subordinator, the stock price process exhibits jumps with state‐dependent Lévy measure. When the time change is a time integral of an activity rate process, the stock price process has local‐stochastic volatility and default intensity. When the time change process is a Lévy subordinator in turn time changed with a time integral of an activity rate process, the stock price process has state‐dependent jumps, local‐stochastic volatility, and default intensity. We develop two analytical approaches to the pricing of credit and equity derivatives in this class of models. The two approaches are based on the Laplace transform inversion and the spectral expansion approach, respectively. If the resolvent (the Laplace transform of the transition semigroup) of the Markov process and the Laplace transform of the time change are both available in closed form, the expectation operator of the time‐changed process is expressed in closed form as a single integral in the complex plane. If the payoff is square integrable, the complex integral is further reduced to a spectral expansion. To illustrate our general framework, we time change the jump‐to‐default extended constant elasticity of variance model of Carr and Linetsky (2006) and obtain a rich class of analytically tractable models with jumps, local‐stochastic volatility, and default intensity. These models can be used to jointly price equity and credit derivatives.  相似文献   

16.
We consider that the reserve of an insurance company follows a Cramér-Lundberg process. The management has the possibility of controlling the risk by means of reinsurance. Our aim is to find a dynamic choice of both the reinsurance policy and the dividend distribution strategy that maximizes the cumulative expected discounted dividend payouts. We study the usual cases of excess-of-loss and proportional reinsurance as well as the family of all possible reinsurance contracts. We characterize the optimal value function as the smallest viscosity solution of the associated Hamilton-Jacobi-Bellman equation and we prove that there exists an optimal band strategy. We also describe the optimal value function for small initial reserves.  相似文献   

17.
We develop and test a fast and accurate semi‐analytical formula for single‐name default swaptions in the context of a shifted square root jump diffusion (SSRJD) default intensity model. The model can be calibrated to the CDS term structure and a few default swaptions, to price and hedge other credit derivatives consistently. We show with numerical experiments that the model implies plausible volatility smiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号