共查询到20条相似文献,搜索用时 0 毫秒
1.
We suggest a semi-nonparametric estimator for the call-option price surface. The estimator is a bivariate tensor-product B-spline. To enforce no-arbitrage constraints across strikes and expiry dates, we establish sufficient no-arbitrage conditions on the control net of the B-spline surface. The conditions are linear and therefore allow for an implementation of the estimator by means of standard quadratic programming techniques. The consistency of the estimator is proved. By means of simulations, we explore the statistical efficiency benefits that are associated with estimating option price surfaces and state-price densities under the full set of no-arbitrage constraints. We estimate a call-option price surface, families of first-order strike derivatives, and state-price densities for S&P 500 option data. 相似文献
2.
We seek a closed-form series approximation of European option prices under a variety of diffusion models. The proposed convergent series are derived using the Hermite polynomial approach. Departing from the usual option pricing routine in the literature, our model assumptions have no requirements for affine dynamics or explicit characteristic functions. Moreover, convergent expansions provide a distinct insight into how and on which order the model parameters affect option prices, in contrast with small-time asymptotic expansions in the literature. With closed-form expansions, we explicitly translate model features into option prices, such as mean-reverting drift and self-exciting or skewed jumps. Numerical examples illustrate the accuracy of this approach and its advantage over alternative expansion methods. 相似文献
3.
A growing literature advocates the use of microstructure noise-contaminated high-frequency data for the purpose of volatility estimation. This paper evaluates and compares the quality of several recently-proposed estimators in the context of a relevant economic metric, i.e., profits from option pricing and trading. Using forecasts obtained by virtue of alternative volatility estimates, agents price short-term options on the S&P 500 index before trading with each other at average prices. The agents’ average profits and the Sharpe ratios of the profits constitute the criteria used to evaluate alternative volatility estimates and the corresponding forecasts. For our data, we find that estimators with superior finite sample Mean-squared-error properties generate higher average profits and higher Sharpe ratios, in general. We confirm that, even from a forecasting standpoint, there is scope for optimizing the finite sample properties of alternative volatility estimators as advocated by Bandi and Russell [Bandi, F.M., Russell, J.R., 2005. Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations. Working Paper; Bandi, F.M., Russell, J.R., 2008b. Microstructure noise, realized variance, and optimal sampling. Review of Economic Studies 75, 339–369] in recent work. 相似文献
4.
State price densities (SPDs) are an important element in applied quantitative finance. In a Black–Scholes world they are lognormal distributions, but in practice volatility changes and the distribution deviates from log-normality. In order to study the degree of this deviation, we estimate SPDs using EUREX option data on the DAX index via a nonparametric estimator of the second derivative of the (European) call pricing function. The estimator is constrained so as to satisfy no-arbitrage constraints and corrects for the intraday covariance structure in option prices. In contrast to existing methods, we do not use any parametric or smoothness assumptions. 相似文献
5.
In a sample selection or treatment effects model, common unobservables may affect both the outcome and the probability of selection in unknown ways. This paper shows that the distribution function of potential outcomes, conditional on covariates, can be identified given an observed variable V that affects the treatment or selection probability in certain ways and is conditionally independent of the error terms in a model of potential outcomes. Selection model estimators based on this identification are provided, which take the form of simple weighted averages, GMM, or two stage least squares. These estimators permit endogenous and mismeasured regressors. Empirical applications are provided to estimation of a firm investment model and a schooling effects on wages model. 相似文献
6.
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing non-stochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series nonparametric estimates of the score function are employed in adaptive estimates of parameters of interest. These estimates are as efficient as the ones based on a correct form, in particular they are more efficient than pseudo-Gaussian maximum likelihood estimates at non-Gaussian distributions. Two different adaptive estimates are considered, relying on somewhat different regularity conditions. A Monte Carlo study of finite sample performance is included. 相似文献
7.
We propose a multivariate generalization of the multiplicative volatility model of Engle and Rangel (2008), which has a nonparametric long run component and a unit multivariate GARCH short run dynamic component. We suggest various kernel-based estimation procedures for the parametric and nonparametric components, and derive the asymptotic properties thereof. For the parametric part of the model, we obtain the semiparametric efficiency bound. Our method is applied to a bivariate stock index series. We find that the univariate model of Engle and Rangel (2008) appears to be violated in the data whereas our multivariate model is more consistent with the data. 相似文献
8.
We define a new procedure for consistent estimation of nonparametric simultaneous equations models under the conditional mean independence restriction of Newey et al. [1999. Nonparametric estimation of triangular simultaneous equation models. Econometrica 67, 565–603]. It is based upon local polynomial regression and marginal integration techniques. We establish the asymptotic distribution of our estimator under weak data dependence conditions. Simulation evidence suggests that our estimator may significantly outperform the estimators of Pinkse [2000. Nonparametric two-step regression estimation when regressors and errors are dependent. Canadian Journal of Statistics 28, 289–300] and Newey and Powell [2003. Instrumental variable estimation of nonparametric models. Econometrica 71, 1565–1578]. 相似文献
9.
This paper proposes an estimation method for a partial parametric model with multiple integrated time series. Our estimation procedure is based on the decomposition of the nonparametric part of the regression function into homogeneous and integrable components. It consists of two steps: In the first step we parameterize and fit the homogeneous component of the nonparametric part by the nonlinear least squares with other parametric terms in the model, and use in the second step the standard kernel method to nonparametrically estimate the integrable component of the nonparametric part from the residuals in the first step. We establish consistency and obtain the asymptotic distribution of our estimator. A simulation shows that our estimator performs well in finite samples. For the empirical illustration, we estimate the money demand functions for the US and Japan using our model and methodology. 相似文献
10.
It is commonly accepted that some financial data may exhibit long-range dependence, while other financial data exhibit intermediate-range dependence or short-range dependence. These behaviours may be fitted to a continuous-time fractional stochastic model. The estimation procedure proposed in this paper is based on a continuous-time version of the Gauss–Whittle objective function to find the parameter estimates that minimize the discrepancy between the spectral density and the data periodogram. As a special case, the proposed estimation procedure is applied to a class of fractional stochastic volatility models to estimate the drift, standard deviation and memory parameters of the volatility process under consideration. As an application, the volatility of the Dow Jones, S&P 500, CAC 40, DAX 30, FTSE 100 and NIKKEI 225 is estimated. 相似文献
11.
We propose a general two-step estimator for a popular Markov discrete choice model that includes a class of Markovian games with continuous observable state space. Our estimation procedure generalizes the computationally attractive methodology of Pesendorfer and Schmidt-Dengler (2008) that assumed finite observable states. This extension is non-trivial as the policy value functions are solutions to some type II integral equations. We show that the inverse problem is well-posed. We provide a set of primitive conditions to ensure root-T consistent estimation for the finite dimensional structural parameters and the distribution theory for the value functions in a time series framework. 相似文献
12.
In this paper we consider the problem of estimating semiparametric panel data models with cross section dependence, where the individual-specific regressors enter the model nonparametrically whereas the common factors enter the model linearly. We consider both heterogeneous and homogeneous regression relationships when both the time and cross-section dimensions are large. We propose sieve estimators for the nonparametric regression functions by extending Pesaran’s (2006) common correlated effect (CCE) estimator to our semiparametric framework. Asymptotic normal distributions for the proposed estimators are derived and asymptotic variance estimators are provided. Monte Carlo simulations indicate that our estimators perform well in finite samples. 相似文献
13.
This paper is concerned with the discrete time stochastic volatility model Yi=exp(Xi/2)ηi, Xi+1=b(Xi)+σ(Xi)ξi+1, where only (Yi) is observed. The model is rewritten as a particular hidden model: Zi=Xi+εi, Xi+1=b(Xi)+σ(Xi)ξi+1, where (ξi) and (εi) are independent sequences of i.i.d. noise. Moreover, the sequences (Xi) and (εi) are independent and the distribution of ε is known. Then, our aim is to estimate the functions b and σ2 when only observations Z1,…,Zn are available. We propose to estimate bf and (b2+σ2)f and study the integrated mean square error of projection estimators of these functions on automatically selected projection spaces. By ratio strategy, estimators of b and σ2 are then deduced. The mean square risk of the resulting estimators are studied and their rates are discussed. Lastly, simulation experiments are provided: constants in the penalty functions defining the estimators are calibrated and the quality of the estimators is checked on several examples. 相似文献
14.
15.
We consider semiparametric frequency domain analysis of cointegration between long memory processes, i.e. fractional cointegration, allowing derivation of useful long-run relations even among stationary processes. The approach is due to Robinson (1994b. Annals of Statistics 22, 515–539) and uses a degenerating part of the periodogram near the origin to form a narrow-band frequency domain least squares (FDLS) estimator of the cointegrating relation, which is consistent for arbitrary short-run dynamics. We derive the asymptotic distribution theory for the FDLS estimator of the cointegration vector in the stationary long memory case, thus complementing Robinson's consistency result. An application to the relation between the volatility realized in the stock market and the associated implicit volatility derived from option prices is offered. 相似文献
16.
This paper extends the jump detection method based on bipower variation to identify realized jumps on financial markets and to estimate parametrically the jump intensity, mean, and variance. Finite sample evidence suggests that the jump parameters can be accurately estimated and that the statistical inferences are reliable under the assumption that jumps are rare and large. Applications to equity market, treasury bond, and exchange rate data reveal important differences in jump frequencies and volatilities across asset classes over time. For investment grade bond spread indices, the estimated jump volatility has more forecasting power than interest rate factors and volatility factors including option-implied volatility, with control for systematic risk factors. The jump volatility risk factor seems to capture the low frequency movements in credit spreads and comoves countercyclically with the price–dividend ratio and corporate default rate. 相似文献
17.
In this paper estimators for distribution free heteroskedastic binary response models are proposed. The estimation procedures are based on relationships between distribution free models with a conditional median restriction and parametric models (such as Probit/Logit) exhibiting (multiplicative) heteroskedasticity. The first proposed estimator is based on the observational equivalence between the two models, and is a semiparametric sieve estimator (see, e.g. Gallant and Nychka (1987), Ai and Chen (2003) and Chen et al. (2005)) for the regression coefficients, based on maximizing standard Logit/Probit criterion functions, such as NLLS and MLE. This procedure has the advantage that choice probabilities and regression coefficients are estimated simultaneously. The second proposed procedure is based on the equivalence between existing semiparametric estimators for the conditional median model (, and ) and the standard parametric (Probit/Logit) NLLS estimator. This estimator has the advantage of being implementable with standard software packages such as Stata. Distribution theory is developed for both estimators and a Monte Carlo study indicates they both perform well in finite samples. 相似文献
18.
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated and censored regression, which is highly robust but relatively imprecise. To improve its performance, we also propose data-adaptive and one-step trimmed estimators. We derive the robust and asymptotic properties of all proposed estimators and show that the one-step estimators (e.g., one-step SCLS) are as robust as GTE and are asymptotically equivalent to the original estimator (e.g., SCLS). The finite-sample properties of existing and proposed estimators are studied by means of Monte Carlo simulations. 相似文献
19.
We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial asset prices. Our estimates are based on in-fill asymptotics for directly identifying the jumps, together with Extreme Value Theory (EVT) approximations and methods-of-moments for assessing the tail decay parameters and tail dependencies. On implementing the procedures with a panel of intraday prices for a large cross-section of individual stocks and the S&P 500 market portfolio, we find that the distributions of the systematic and idiosyncratic jumps are both generally heavy-tailed and close to symmetric, and show how the jump tail dependencies deduced from the high-frequency data together with the day-to-day variation in the diffusive volatility account for the “extreme” joint dependencies observed at the daily level. 相似文献
20.
Two classes of semiparametric diffusion models are considered, where either the drift or the diffusion term is parameterized, while the other term is left unspecified. We propose a pseudo-maximum likelihood estimator (PMLE) of the parametric component that maximizes the likelihood with a preliminary estimator of the unspecified term plugged in. It is demonstrated how models and estimators can be used in a two-step specification testing strategy of semiparametric and fully parametric models, and shown that approximate/simulated versions of the PMLE inherit the properties of the actual but infeasible estimator. A simulation study investigates the finite sample performance of the PMLE. 相似文献