首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the semiparametric estimation of binary choice sample selection models under a joint symmetry assumption. Our approaches overcome various drawbacks associated with existing estimators. In particular, our method provides root-nn consistent estimators for both the intercept and slope parameters of the outcome equation in a heteroscedastic framework, without the usual cross equation exclusion restriction or parametric specification for the error distribution and/or the form of heteroscedasticity. Our two-step estimators are shown to be consistent and asymptotically normal. A Monte Carlo simulation study indicates the usefulness of our approaches.  相似文献   

2.
This paper extends the semiparametric efficient treatment of panel data models pursued by Park and Simar [Park, B.U., Simar, L., 1994. Efficient semiparametric estimation in stochastic frontier models. Journal of the American Statistical Association 89, 929–936] and Park et al. [Park, B.U., Sickles, R.C., Simar, L., 1998. Stochastic frontiers: a semiparametric approach. Journal of Econometrics 84, 273–301; Park, B.U., Sickles, R.C., Simar, L., 2003. Semiparametric efficient estimation of AR(1) panel data models. Journal of Econometrics 117, 279–309] to a dynamic panel setting. We develop a semiparametric efficient estimator under minimal assumptions when the panel model contains a lagged dependent variable. We apply this new estimator to analyze the structure of demand between city pairs for selected U.S. airlines during the period 1979 I–1992 IV.  相似文献   

3.
Fixed effects estimators of nonlinear panel models can be severely biased due to the incidental parameters problem. In this paper, I characterize the leading term of a large-T expansion of the bias of the MLE and estimators of average marginal effects in parametric fixed effects panel binary choice models. For probit index coefficients, the former term is proportional to the true value of the coefficients being estimated. This result allows me to derive a lower bound for the bias of the MLE. I then show that the resulting fixed effects estimates of ratios of coefficients and average marginal effects exhibit no bias in the absence of heterogeneity and negligible bias for a wide variety of distributions of regressors and individual effects in the presence of heterogeneity. I subsequently propose new bias-corrected estimators of index coefficients and marginal effects with improved finite sample properties for linear and nonlinear models with predetermined regressors.  相似文献   

4.
We show how the dynamic logit model for binary panel data may be approximated by a quadratic exponential model. Under the approximating model, simple sufficient statistics exist for the subject-specific parameters introduced to capture the unobserved heterogeneity between subjects. The latter must be distinguished from the state dependence which is accounted for by including the lagged response variable among the regressors. By conditioning on the sufficient statistics, we derive a pseudo conditional likelihood estimator of the structural parameters of the dynamic logit model, which is simple to compute. Asymptotic properties of this estimator are studied in detail. Simulation results show that the estimator is competitive in terms of efficiency with estimators recently proposed in the econometric literature.  相似文献   

5.
6.
One of the most cited studies within the field of binary choice models is that of Klein and Spady (1993) , in which the authors propose a semiparametric estimator for use when the distribution of the error term is unknown. However, although theoretically appealing, the estimator has been found to be difficult to implement, and therefore not very attractive from an applied point of view. The current study offers an indirect inference‐based solution to this problem. The new estimator is not only simple with good small‐sample properties, but also consistent and asymptotically normal.  相似文献   

7.
8.
We propose a general two-step estimator for a popular Markov discrete choice model that includes a class of Markovian games with continuous observable state space. Our estimation procedure generalizes the computationally attractive methodology of Pesendorfer and Schmidt-Dengler (2008) that assumed finite observable states. This extension is non-trivial as the policy value functions are solutions to some type II integral equations. We show that the inverse problem is well-posed. We provide a set of primitive conditions to ensure root-T consistent estimation for the finite dimensional structural parameters and the distribution theory for the value functions in a time series framework.  相似文献   

9.
10.
In this paper we derive a semiparametric efficient adaptive estimator of an asymmetric GARCH model. Applying some general results from Drost et al. [1997. The Annals of Statistics 25, 786–818], we first estimate the unknown density function of the disturbances by kernel methods, then apply a one-step Newton–Raphson method to obtain a more efficient estimator than the quasi-maximum likelihood estimator. The proposed semiparametric estimator is adaptive for parameters appearing in the conditional standard deviation model with respect to the unknown distribution of the disturbances.  相似文献   

11.
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated and censored regression, which is highly robust but relatively imprecise. To improve its performance, we also propose data-adaptive and one-step trimmed estimators. We derive the robust and asymptotic properties of all proposed estimators and show that the one-step estimators (e.g., one-step SCLS) are as robust as GTE and are asymptotically equivalent to the original estimator (e.g., SCLS). The finite-sample properties of existing and proposed estimators are studied by means of Monte Carlo simulations.  相似文献   

12.
Within the affiliated private-values paradigm, we develop a tractable empirical model of equilibrium behaviour at first-price, sealed-bid auctions. The model is non-parametrically identified, but the rate of convergence in estimation is slow when the number of bidders is even moderately large, so we develop a semiparametric estimation strategy, focusing on the Archimedean family of copulae and implementing this framework using particular members—the Clayton, Frank, and Gumbel copulae. We apply our framework to data from low-price, sealed-bid auctions used by the Michigan Department of Transportation to procure road-resurfacing services, rejecting the hypothesis of independence and finding significant (and high) affiliation in cost signals.  相似文献   

13.
We correct the limit theory presented in an earlier paper by Hu and Phillips [2004a. Nonstationary discrete choice. Journal of Econometrics 120, 103–138] for nonstationary time series discrete choice models with multiple choices and thresholds. The new limit theory shows that, in contrast to the binary choice model with nonstationary regressors and a zero threshold where there are dual rates of convergence (n1/4n1/4 and n3/4n3/4), all parameters including the thresholds converge at the rate n3/4n3/4. The presence of nonzero thresholds therefore materially affects rates of convergence. Dual rates of convergence reappear when stationary variables are present in the system. Some simulation evidence is provided, showing how the magnitude of the thresholds affects finite sample performance. A new finding is that predicted probabilities and marginal effect estimates have finite sample distributions that manifest a pile-up, or increasing density, towards the limits of the domain of definition.  相似文献   

14.
This paper presents a convenient shortcut method for implementing the Heckman estimator of the dynamic random effects probit model and other dynamic nonlinear panel data models using standard software. It then compares the estimators proposed by Heckman, Orme and Wooldridge, based on three alternative approximations, first in an empirical model for the probability of unemployment and then in a set of simulation experiments. The results indicate that none of the three estimators dominates the other two in all cases. In most cases, all three estimators display satisfactory performance, except when the number of time periods is very small.  相似文献   

15.
I propose a quasi-maximum likelihood framework for estimating nonlinear models with continuous or discrete endogenous explanatory variables. Joint and two-step estimation procedures are considered. The joint procedure is a quasi-limited information maximum likelihood procedure, as one or both of the log likelihoods may be misspecified. The two-step control function approach is computationally simple and leads to straightforward tests of endogeneity. In the case of discrete endogenous explanatory variables, I argue that the control function approach can be applied with generalized residuals to obtain average partial effects. I show how the results apply to nonlinear models for fractional and nonnegative responses.  相似文献   

16.
We provide a set of conditions sufficient for consistency of a general class of fixed effects instrumental variables (FE-IV) estimators in the context of a correlated random coefficient panel data model, where one ignores the presence of individual-specific slopes. We discuss cases where the assumptions are met and violated. Monte Carlo simulations verify that the FE-IV estimator of the population averaged effect performs notably better than other standard estimators, provided a full set of period dummies is included. We also propose a simple test of selection bias in unbalanced panels when we suspect the slopes may vary by individual.  相似文献   

17.
We consider pseudo-panel data models constructed from repeated cross sections in which the number of individuals per group is large relative to the number of groups and time periods. First, we show that, when time-invariant group fixed effects are neglected, the OLS estimator does not converge in probability to a constant but rather to a random variable. Second, we show that, while the fixed-effects (FE) estimator is consistent, the usual t statistic is not asymptotically normally distributed, and we propose a new robust t statistic whose asymptotic distribution is standard normal. Third, we propose efficient GMM estimators using the orthogonality conditions implied by grouping and we provide t tests that are valid even in the presence of time-invariant group effects. Our Monte Carlo results show that the proposed GMM estimator is more precise than the FE estimator and that our new t test has good size and is powerful.  相似文献   

18.
First difference maximum likelihood (FDML) seems an attractive estimation methodology in dynamic panel data modeling because differencing eliminates fixed effects and, in the case of a unit root, differencing transforms the data to stationarity, thereby addressing both incidental parameter problems and the possible effects of nonstationarity. This paper draws attention to certain pathologies that arise in the use of FDML that have gone unnoticed in the literature and that affect both finite sample performance and asymptotics. FDML uses the Gaussian likelihood function for first differenced data and parameter estimation is based on the whole domain over which the log-likelihood is defined. However, extending the domain of the likelihood beyond the stationary region has certain consequences that have a major effect on finite sample and asymptotic performance. First, the extended likelihood is not the true likelihood even in the Gaussian case and it has a finite upper bound of definition. Second, it is often bimodal, and one of its peaks can be so peculiar that numerical maximization of the extended likelihood frequently fails to locate the global maximum. As a result of these pathologies, the FDML estimator is a restricted estimator, numerical implementation is not straightforward and asymptotics are hard to derive in cases where the peculiarity occurs with non-negligible probabilities. The peculiarities in the likelihood are found to be particularly marked in time series with a unit root. In this case, the asymptotic distribution of the FDMLE has bounded support and its density is infinite at the upper bound when the time series sample size T→∞T. As the panel width n→∞n the pathology is removed and the limit theory is normal. This result applies even for TT fixed and we present an expression for the asymptotic distribution which does not depend on the time dimension. We also show how this limit theory depends on the form of the extended likelihood.  相似文献   

19.
Within the independent private-values paradigm, we derive the data-generating process of winning bids for two different objects sold sequentially at English auction, assuming the valuations across objects for a particular bidder are potentially dependent. We demonstrate that, within the Archimedean family of copulas, the model is identified using only observed winning bids, and then propose a semiparametric estimation strategy to recover the joint distribution of valuations. We implement our methods using data from fish auctions held in Denmark and estimate whether bundling is expected-revenue enhancing.  相似文献   

20.
Let S be the number of components in a finite discrete mixing distribution. We prove that the number of waves of panel being greater than or equal to 2S is a sufficient condition for global identification of a dynamic binary choice model in which all the parameters are heterogeneous. This model results in a mixture of S binary first‐order Markov Chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号