首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates the properties of the well-known maximum likelihood estimator in the presence of stochastic volatility and market microstructure noise, by extending the classic asymptotic results of quasi-maximum likelihood estimation. When trying to estimate the integrated volatility and the variance of noise, this parametric approach remains consistent, efficient and robust as a quasi-estimator under misspecified assumptions. Moreover, it shares the model-free feature with nonparametric alternatives, for instance realized kernels, while being advantageous over them in terms of finite sample performance. In light of quadratic representation, this estimator behaves like an iterative exponential realized kernel asymptotically. Comparisons with a variety of implementations of the Tukey–Hanning2 kernel are provided using Monte Carlo simulations, and an empirical study with the Euro/US Dollar future illustrates its application in practice.  相似文献   

2.
We decompose the squared VIX index, derived from US S&P500 options prices, into the conditional variance of stock returns and the equity variance premium. We evaluate a plethora of state-of-the-art volatility forecasting models to produce an accurate measure of the conditional variance. We then examine the predictive power of the VIX and its two components for stock market returns, economic activity and financial instability. The variance premium predicts stock returns while the conditional stock market variance predicts economic activity and has a relatively higher predictive power for financial instability than does the variance premium.  相似文献   

3.
This paper proposes a method for constructing a volatility risk premium, or investor risk aversion, index. The method is intuitive and simple to implement, relying on the sample moments of the recently popularized model-free realized and option-implied volatility measures. A small-scale Monte Carlo experiment confirms that the procedure works well in practice. Implementing the procedure with actual S&P500 option-implied volatilities and high-frequency five-minute-based realized volatilities indicates significant temporal dependencies in the estimated stochastic volatility risk premium, which we in turn relate to a set of macro-finance state variables. We also find that the extracted volatility risk premium helps predict future stock market returns.  相似文献   

4.
Detecting structural changes in volatility is important for understanding volatility dynamics and stylized facts observed for financial returns such as volatility persistence. We propose modified CUSUM and LM tests that are built on a robust estimator of the long-run variance of squared series. We establish conditions under which the new tests have standard null distributions and diverge faster than standard tests under the alternative. The theory allows smooth and abrupt structural changes that can be small. The smoothing parameter is automatically selected such that the proposed test has good finite-sample size and meanwhile achieves decent power gain.  相似文献   

5.
This paper introduces the concept of risk parameter in conditional volatility models of the form ?t=σt(θ0)ηt?t=σt(θ0)ηt and develops statistical procedures to estimate this parameter. For a given risk measure rr, the risk parameter is expressed as a function of the volatility coefficients θ0θ0 and the risk, r(ηt)r(ηt), of the innovation process. A two-step method is proposed to successively estimate these quantities. An alternative one-step approach, relying on a reparameterization of the model and the use of a non Gaussian QML, is proposed. Asymptotic results are established for smooth risk measures, as well as for the Value-at-Risk (VaR). Asymptotic comparisons of the two approaches for VaR estimation suggest a superiority of the one-step method when the innovations are heavy-tailed. For standard GARCH models, the comparison only depends on characteristics of the innovations distribution, not on the volatility parameters. Monte-Carlo experiments and an empirical study illustrate the superiority of the one-step approach for financial series.  相似文献   

6.
We consider model identification for infinite variance autoregressive time series processes. It is shown that a consistent estimate of autoregressive model order can be obtained by minimizing Akaike’s information criterion, and we use all-pass models to identify noncausal autoregressive processes and estimate the order of noncausality (the number of roots of the autoregressive polynomial inside the unit circle in the complex plane). We examine the performance of the order selection procedures for finite samples via simulation, and use the techniques to fit a noncausal autoregressive model to stock market trading volume data.  相似文献   

7.
Long-run variance estimation can typically be viewed as the problem of estimating the scale of a limiting continuous time Gaussian process on the unit interval. A natural benchmark model is given by a sample that consists of equally spaced observations of this limiting process. The paper analyzes the asymptotic robustness of long-run variance estimators to contaminations of this benchmark model. It is shown that any equivariant long-run variance estimator that is consistent in the benchmark model is highly fragile: there always exists a sequence of contaminated models with the same limiting behavior as the benchmark model for which the estimator converges in probability to an arbitrary positive value. A class of robust inconsistent long-run variance estimators is derived that optimally trades off asymptotic variance in the benchmark model against the largest asymptotic bias in a specific set of contaminated models.  相似文献   

8.
This paper introduces and studies the econometric properties of a general new class of models, which I refer to as jump-driven stochastic volatility models, in which the volatility is a moving average of past jumps. I focus attention on two particular semiparametric classes of jump-driven stochastic volatility models. In the first, the price has a continuous component with time-varying volatility and time-homogeneous jumps. The second jump-driven stochastic volatility model analyzed here has only jumps in the price, which have time-varying size. In the empirical application I model the memory of the stochastic variance with a CARMA(2,1) kernel and set the jumps in the variance to be proportional to the squared price jumps. The estimation, which is based on matching moments of certain realized power variation statistics calculated from high-frequency foreign exchange data, shows that the jump-driven stochastic volatility model containing continuous component in the price performs best. It outperforms a standard two-factor affine jump–diffusion model, but also the pure-jump jump-driven stochastic volatility model for the particular jump specification.  相似文献   

9.
Efficient estimation of a multivariate multiplicative volatility model   总被引:1,自引:0,他引:1  
We propose a multivariate generalization of the multiplicative volatility model of Engle and Rangel (2008), which has a nonparametric long run component and a unit multivariate GARCH short run dynamic component. We suggest various kernel-based estimation procedures for the parametric and nonparametric components, and derive the asymptotic properties thereof. For the parametric part of the model, we obtain the semiparametric efficiency bound. Our method is applied to a bivariate stock index series. We find that the univariate model of Engle and Rangel (2008) appears to be violated in the data whereas our multivariate model is more consistent with the data.  相似文献   

10.
We develop an efficient and analytically tractable method for estimation of parametric volatility models that is robust to price-level jumps. The method entails first integrating intra-day data into the Realized Laplace Transform of volatility, which is a model-free estimate of the daily integrated empirical Laplace transform of the unobservable volatility. The estimation is then done by matching moments of the integrated joint Laplace transform with those implied by the parametric volatility model. In the empirical application, the best fitting volatility model is a non-diffusive two-factor model where low activity jumps drive its persistent component and more active jumps drive the transient one.  相似文献   

11.
12.
This paper is concerned with the discrete time stochastic volatility model Yi=exp(Xi/2)ηiYi=exp(Xi/2)ηi, Xi+1=b(Xi)+σ(Xi)ξi+1Xi+1=b(Xi)+σ(Xi)ξi+1, where only (Yi)(Yi) is observed. The model is rewritten as a particular hidden model: Zi=Xi+εiZi=Xi+εi, Xi+1=b(Xi)+σ(Xi)ξi+1Xi+1=b(Xi)+σ(Xi)ξi+1, where (ξi)(ξi) and (εi)(εi) are independent sequences of i.i.d. noise. Moreover, the sequences (Xi)(Xi) and (εi)(εi) are independent and the distribution of εε is known. Then, our aim is to estimate the functions bb and σ2σ2 when only observations Z1,…,ZnZ1,,Zn are available. We propose to estimate bfbf and (b22)f(b2+σ2)f and study the integrated mean square error of projection estimators of these functions on automatically selected projection spaces. By ratio strategy, estimators of bb and σ2σ2 are then deduced. The mean square risk of the resulting estimators are studied and their rates are discussed. Lastly, simulation experiments are provided: constants in the penalty functions defining the estimators are calibrated and the quality of the estimators is checked on several examples.  相似文献   

13.
This paper shows that the asymptotic normal approximation is often insufficiently accurate for volatility estimators based on high frequency data. To remedy this, we derive Edgeworth expansions for such estimators. The expansions are developed in the framework of small-noise asymptotics. The results have application to Cornish–Fisher inversion and help setting intervals more accurately than those relying on normal distribution.  相似文献   

14.
    
This note provides a warning against careless use of the generalized method of moments (GMM) with time series data. We show that if time series follow non‐causal autoregressive processes, their lags are not valid instruments, and the GMM estimator is inconsistent. Moreover, endogeneity of the instruments may not be revealed by the J‐test of overidentifying restrictions that may be inconsistent and has, in general, low finite‐sample power. Our explicit results pertain to a simple linear regression, but they can easily be generalized. Our empirical results indicate that non‐causality is quite common among economic variables, making these problems highly relevant.  相似文献   

15.
Continuous-time stochastic volatility models are becoming an increasingly popular way to describe moderate and high-frequency financial data. Barndorff-Nielsen and Shephard (2001a) proposed a class of models where the volatility behaves according to an Ornstein–Uhlenbeck (OU) process, driven by a positive Lévy process without Gaussian component. These models introduce discontinuities, or jumps, into the volatility process. They also consider superpositions of such processes and we extend that to the inclusion of a jump component in the returns. In addition, we allow for leverage effects and we introduce separate risk pricing for the volatility components. We design and implement practically relevant inference methods for such models, within the Bayesian paradigm. The algorithm is based on Markov chain Monte Carlo (MCMC) methods and we use a series representation of Lévy processes. MCMC methods for such models are complicated by the fact that parameter changes will often induce a change in the distribution of the representation of the process and the associated problem of overconditioning. We avoid this problem by dependent thinning methods. An application to stock price data shows the models perform very well, even in the face of data with rapid changes, especially if a superposition of processes with different risk premiums and a leverage effect is used.  相似文献   

16.
This paper develops a dynamic approximate factor model in which returns are time-series heteroskedastic. The heteroskedasticity has three components: a factor-related component, a common asset-specific component, and a purely asset-specific component. We develop a new multivariate GARCH model for the factor-related component. We develop a univariate stochastic volatility model linked to a cross-sectional series of individual GARCH models for the common asset-specific component and the purely asset-specific component. We apply the analysis to monthly US equity returns for the period January 1926 to December 2000. We find that all three components contribute to the heteroskedasticity of individual equity returns. Factor volatility and the common component in asset-specific volatility have long-term secular trends as well as short-term autocorrelation. Factor volatility has correlation with interest rates and the business cycle.  相似文献   

17.
The paper develops a novel testing procedure for hypotheses on deterministic trends in a multivariate trend stationary model. The trends are estimated by the OLS estimator and the long run variance (LRV) matrix is estimated by a series type estimator with carefully selected basis functions. Regardless of whether the number of basis functions K is fixed or grows with the sample size, the Wald statistic converges to a standard distribution. It is shown that critical values from the fixed-K asymptotics are second-order correct under the large-K asymptotics. A new practical approach is proposed to select K that addresses the central concern of hypothesis testing: the selected smoothing parameter is testing-optimal in that it minimizes the type II error while controlling for the type I error. Simulations indicate that the new test is as accurate in size as the nonstandard test of Vogelsang and Franses (2005) and as powerful as the corresponding Wald test based on the large-K asymptotics. The new test therefore combines the advantages of the nonstandard test and the standard Wald test while avoiding their main disadvantages (power loss and size distortion, respectively).  相似文献   

18.
We consider semiparametric frequency domain analysis of cointegration between long memory processes, i.e. fractional cointegration, allowing derivation of useful long-run relations even among stationary processes. The approach is due to Robinson (1994b. Annals of Statistics 22, 515–539) and uses a degenerating part of the periodogram near the origin to form a narrow-band frequency domain least squares (FDLS) estimator of the cointegrating relation, which is consistent for arbitrary short-run dynamics. We derive the asymptotic distribution theory for the FDLS estimator of the cointegration vector in the stationary long memory case, thus complementing Robinson's consistency result. An application to the relation between the volatility realized in the stock market and the associated implicit volatility derived from option prices is offered.  相似文献   

19.
In this paper, we consider a regression model to study the distributional relationship between economic variables. Unlike the classical regression dealing exclusively with mean relationship, our model can be used to analyze the entire dependent structure in distribution. Technically, we treat density functions as random elements and represent the regression relationship as a compact linear operator in the Hilbert spaces of square integrable functions. We propose a consistent estimation procedure for our model, and develop a test to investigate the dependent structure of moments. An empirical example is provided to illustrate how our methodology can be implemented in practical applications.  相似文献   

20.
We develop new tests for the hypothesis of unit roots that are based on the marginal likelihood of the general linear model. The marginal likelihood allows the incorporation of invariance arguments in the likelihood function. It turns out that marginal likelihood tests for unit roots appear to be more powerful than other unit root tests. For some basic models power functions almost coincide with the power envelopes, even in small samples. General correlation structures can be incorporated, either by standard likelihood procedures or by adjustments of the test statistics on the basis of asymptotic distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号