共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
David R. Bickel 《Revue internationale de statistique》2014,82(3):457-476
Empirical Bayes methods of estimating the local false discovery rate (LFDR) by maximum likelihood estimation (MLE), originally developed for large numbers of comparisons, are applied to a single comparison. Specifically, when assuming a lower bound on the mixing proportion of true null hypotheses, the LFDR MLE can yield reliable hypothesis tests and confidence intervals given as few as one comparison. Simulations indicate that constrained LFDR MLEs perform markedly better than conventional methods, both in testing and in confidence intervals, for high values of the mixing proportion, but not for low values. (A decision‐theoretic interpretation of the confidence distribution made those comparisons possible.) In conclusion, the constrained LFDR estimators and the resulting effect‐size interval estimates are not only effective multiple comparison procedures but also they might replace p‐values and confidence intervals more generally. The new methodology is illustrated with the analysis of proteomics data. 相似文献
3.
M. J. van der Laan 《Statistica Neerlandica》1997,51(2):178-200
A large number of proposals for estimating the bivariate survival function under random censoring have been made. In this paper we discuss the most prominent estimators, where prominent is meant in the sense that they are best for practical use; Dabrowska's estimator, the Prentice–Cai estimator, Pruitt's modified EM-estimator, and the reduced data NPMLE of van der Laan. We show how these estimators are computed and present their intuitive background. The asymptotic results are summarized. Furthermore, we give a summary of the practical performance of the estimators under different levels of dependence and censoring based on extensive simulation results. This leads also to a practical advise. 相似文献
4.
Daniel Yekutieli Anat Reiner-Benaim Yoav Benjamini Gregory I. Elmer Neri Kafkafi Noah E. Letwin Norman H. Lee 《Statistica Neerlandica》2006,60(4):414-437
The multiplicity problem is evident in the simplest form of statistical analysis of gene expression data – the identification of differentially expressed genes. In more complex analysis, the problem is compounded by the multiplicity of hypotheses per gene. Thus, in some cases, it may be necessary to consider testing millions of hypotheses. We present three general approaches for addressing multiplicity in large research problems. (a) Use the scalability of false discovery rate (FDR) controlling procedures; (b) apply FDR-controlling procedures to a selected subset of hypotheses; (c) apply hierarchical FDR-controlling procedures. We also offer a general framework for ensuring reproducible results in complex research, where a researcher faces more than just one large research problem. We demonstrate these approaches by analyzing the results of a complex experiment involving the study of gene expression levels in different brain regions across multiple mouse strains. 相似文献
5.
In this article, we propose a mean linear regression model where the response variable is inverse gamma distributed using a new parameterization of this distribution that is indexed by mean and precision parameters. The main advantage of our new parametrization is the straightforward interpretation of the regression coefficients in terms of the expectation of the positive response variable, as usual in the context of generalized linear models. The variance function of the proposed model has a quadratic form. The inverse gamma distribution is a member of the exponential family of distributions and has some distributions commonly used for parametric models in survival analysis as special cases. We compare the proposed model to several alternatives and illustrate its advantages and usefulness. With a generalized linear model approach that takes advantage of exponential family properties, we discuss model estimation (by maximum likelihood), black further inferential quantities and diagnostic tools. A Monte Carlo experiment is conducted to evaluate the performances of these estimators in finite samples with a discussion of the obtained results. A real application using minerals data set collected by Department of Mines of the University of Atacama, Chile, is considered to demonstrate the practical potential of the proposed model. 相似文献
6.
This paper deals with the estimation of P[Y < X] when X and Y are two independent generalized exponential distributions with different shape parameters but having the same scale parameters. The maximum likelihood estimator and its asymptotic distribution is obtained. The asymptotic distribution is used to construct an asymptotic confidence interval of P[Y < X]. Assuming that the common scale parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator and Bayes estimator of P[Y < X] are obtained. Different confidence intervals are proposed. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a simulated data set has also been presented for illustrative purposes.Part of the work was supported by a grant from the Natural Sciences and Engineering Research Council 相似文献
7.
For contingency tables with extensive missing data, the unrestricted MLE under the saturated model, computed by the EM algorithm,
is generally unsatisfactory. In this case, it may be better to fit a simpler model by imposing some restrictions on the parameter
space. Perlman and Wu (1999) propose lattice conditional independence (LCI) models for contingency tables with arbitrary missing data patterns. When this LCI model fits well, the restricted MLE under the LCI model is more accurate than the unrestricted
MLE under the saturated model, but not in general. Here we propose certain empirical Bayes (EB) estimators that adaptively
combine the best features of the restricted and unrestricted MLEs. These EB estimators appear to be especially useful when
the observed data is sparse, even in cases where the suitability of the LCI model is uncertain. We also study a restricted
EM algorithm (called the ER algorithm) with similar desirable features.
Received: July 1999 相似文献
8.
The availability of a stochastic repairable system depends on the failure behaviour and on repair strategies. In this paper, we deal with a general repair model for a system using auxiliary counting processes and corresponding intensities which include various degrees of repair (between minimal repair and perfect repair). For determining the model parameters we need estimators depending on failure times and repair times: maximum likelihood (ML) estimator and Bayes estimators are considered. Special results are obtained by the use of Weibull-type intensities and random observation times. 相似文献
9.
For estimatingp(⩾ 2) independent Poisson means, the paper considers a compromise between maximum likelihood and empirical Bayes estimators. Such compromise estimators enjoy both good componentwise as well as ensemble properties. Research supported by the NSF Grant Number MCS-8218091. 相似文献
10.
Francesco Pauli 《Revue internationale de statistique》2019,87(1):68-79
The reproducibility crisis, that is, the fact that many scientific results are difficult to replicate, pointing to their unreliability or falsehood, is a hot topic in the recent scientific literature, and statistical methodologies, testing procedures and p‐values, in particular, are at the centre of the debate. Assessment of the extent of the problem–the reproducibility rate or the false discovery rate–and the role of contributing factors are still an open problem. Replication experiments, that is, systematic replications of existing results, may offer relevant information on these issues. We propose a statistical model to deal with such information, in particular to estimate the reproducibility rate and the effect of some study characteristics on its reliability. We analyse data from a recent replication experiment in psychology finding a reproducibility rate broadly coherent with other assessments from the same experiment. Our results also confirm the expected role of some contributing factor (unexpectedness of the result and room for bias) while they suggest that the similarity between original study and the replica is not so relevant, thus mitigating some criticism directed to replication experiments. 相似文献
11.
Milton Abdul Thorlie Lixin Song Muhammad Amin Xiaoguang Wang 《Statistica Neerlandica》2015,69(3):329-356
This article examines volatility models for modeling and forecasting the Standard & Poor 500 (S&P 500) daily stock index returns, including the autoregressive moving average, the Taylor and Schwert generalized autoregressive conditional heteroscedasticity (GARCH), the Glosten, Jagannathan and Runkle GARCH and asymmetric power ARCH (APARCH) with the following conditional distributions: normal, Student's t and skewed Student's t‐distributions. In addition, we undertake unit root (augmented Dickey–Fuller and Phillip–Perron) tests, co‐integration test and error correction model. We study the stationary APARCH (p) model with parameters, and the uniform convergence, strong consistency and asymptotic normality are prove under simple ordered restriction. In fitting these models to S&P 500 daily stock index return data over the period 1 January 2002 to 31 December 2012, we found that the APARCH model using a skewed Student's t‐distribution is the most effective and successful for modeling and forecasting the daily stock index returns series. The results of this study would be of great value to policy makers and investors in managing risk in stock markets trading. 相似文献
12.
David R. Bickel 《Revue internationale de statistique》2013,81(2):188-206
While the likelihood ratio measures statistical support for an alternative hypothesis about a single parameter value, it is undefined for an alternative hypothesis that is composite in the sense that it corresponds to multiple parameter values. Regarding the parameter of interest as a random variable enables measuring support for a composite alternative hypothesis without requiring the elicitation or estimation of a prior distribution, as described below. In this setting, in which parameter randomness represents variability rather than uncertainty, the ideal measure of the support for one hypothesis over another is the difference in the posterior and prior log‐odds. That ideal support may be replaced by any measure of support that, on a per‐observation basis, is asymptotically unbiased as a predictor of the ideal support. Such measures of support are easily interpreted and, if desired, can be combined with any specified or estimated prior probability of the null hypothesis. Two qualifying measures of support are minimax‐optimal. An application to proteomics data indicates that a modification of optimal support computed from data for a single protein can closely approximate the estimated difference in posterior and prior odds that would be available with the data for 20 proteins. 相似文献
13.
Dragi Anevski 《Statistica Neerlandica》2003,57(2):245-257
We obtain a relation between the time between two bird-catchings and the total resting period of a bird, leading to the problem of estimating the derivative of a convex density. We state a fundamental result on the nonparametric maximum likelihood estimator of a convex density. Further, we derive the optimal rate in the minimax risk sense for estimating the derivative of a convex density. 相似文献
14.
This paper presents a method for estimating the model Λ(Y)=min(β′X+U, C), where Y is a scalar, Λ is an unknown increasing function, X is a vector of explanatory variables, β is a vector of unknown parameters, U has unknown cumulative distribution function F, and C is a censoring threshold. It is not assumed that Λ and F belong to known parametric families; they are estimated nonparametrically. This model includes many widely used models as special cases, including the proportional hazards model with unobserved heterogeneity. The paper develops n1/2-consistent, asymptotically normal estimators of Λ and F. Estimators of β that are n1/2-consistent and asymptotically normal already exist. The results of Monte Carlo experiments illustrate the finite-sample behavior of the estimators. 相似文献
15.
Hien D. Nguyen Geoffrey J. McLachlan Jeremy F. P. Ullmann Andrew L. Janke 《Statistica Neerlandica》2016,70(4):414-439
Time series data arise in many medical and biological imaging scenarios. In such images, a time series is obtained at each of a large number of spatially dependent data units. It is interesting to organize these data into model‐based clusters. A two‐stage procedure is proposed. In stage 1, a mixture of autoregressions (MoAR) model is used to marginally cluster the data. The MoAR model is fitted using maximum marginal likelihood (MMaL) estimation via a minorization–maximization (MM) algorithm. In stage 2, a Markov random field (MRF) model induces a spatial structure onto the stage 1 clustering. The MRF model is fitted using maximum pseudolikelihood (MPL) estimation via an MM algorithm. Both the MMaL and MPL estimators are proved to be consistent. Numerical properties are established for both MM algorithms. A simulation study demonstrates the performance of the two‐stage procedure. An application to the segmentation of a zebrafish brain calcium image is presented. 相似文献
16.
Performance of empirical Bayes estimators of random coefficients in multilevel analysis: Some results for the random intercept-only model 总被引:1,自引:0,他引:1
Math J. J. M. Candel 《Statistica Neerlandica》2004,58(2):197-219
For a multilevel model with two levels and only a random intercept, the quality of different estimators of the random intercept is examined. Analytical results are given for the marginal model interpretation where negative estimates of the variance components are allowed for. Except for four or five level-2 units, the Empirical Bayes Estimator (EBE) has a lower average Bayes risk than the Ordinary Least Squares Estimator (OLSE). The EBEs based on restricted maximum likelihood (REML) estimators of the variance components have a lower Bayes risk than the EBEs based on maximum likelihood (ML) estimators. For the hierarchical model interpretation, where estimates of the variance components are restricted being positive, Monte Carlo simulations were done. In this case the EBE has a lower average Bayes risk than the OLSE, also for four or five level-2 units. For large numbers of level-1 (30) or level-2 units (100), the performances of REML-based and ML-based EBEs are comparable. For small numbers of level-1 (10) and level-2 units (25), the REML-based EBEs have a lower Bayes risk than ML-based EBEs only for high intraclass correlations (0.5). 相似文献
17.
In this paper, we consider portmanteau tests for testing the adequacy of multiplicative seasonal autoregressive moving‐average models under the assumption that the errors are uncorrelated but not necessarily independent. We relax the standard independence assumption on the error terms in order to extend the range of applications of the seasonal autoregressive moving‐average models. We study the asymptotic distributions of residual and normalized residual empirical autocovariances and autocorrelations under weak assumptions on noise. We establish the asymptotic behavior of the proposed statistics. A set of Monte Carlo experiments and an application to monthly mean total sunspot number are presented. 相似文献
18.
Chris Skinner 《Revue internationale de statistique》2019,87(Z1):S64-S78
This paper reviews methods for handling complex sampling schemes when analysing categorical survey data. It is generally assumed that the complex sampling scheme does not affect the specification of the parameters of interest, only the methodology for making inference about these parameters. The organisation of the paper is loosely chronological. Contingency table data are emphasised first before moving on to the analysis of unit‐level data. Weighted least squares methods, introduced in the mid 1970s along with methods for two‐way tables, receive early attention. They are followed by more general methods based on maximum likelihood, particularly pseudo maximum likelihood estimation. Point estimation methods typically involve the use of survey weights in some way. Variance estimation methods are described in broad terms. There is a particular emphasis on methods of testing. The main modelling methods considered are log‐linear models, logit models, generalised linear models and latent variable models. There is no coverage of multilevel models. 相似文献
19.
Typical data that arise from surveys, experiments, and observational studies include continuous and discrete variables. In this article, we study the interdependence among a mixed (continuous, count, ordered categorical, and binary) set of variables via graphical models. We propose an ?1‐penalized extended rank likelihood with an ascent Monte Carlo expectation maximization approach for the copula Gaussian graphical models and establish near conditional independence relations and zero elements of a precision matrix. In particular, we focus on high‐dimensional inference where the number of observations are in the same order or less than the number of variables under consideration. To illustrate how to infer networks for mixed variables through conditional independence, we consider two datasets: one in the area of sports and the other concerning breast cancer. 相似文献
20.
The classes of monotone or convex (and necessarily monotone) densities on can be viewed as special cases of the classes of k - monotone densities on . These classes bridge the gap between the classes of monotone (1-monotone) and convex decreasing (2-monotone) densities for which asymptotic results are known, and the class of completely monotone (∞-monotone) densities on . In this paper we consider non-parametric maximum likelihood and least squares estimators of a k -monotone density g 0 . We prove existence of the estimators and give characterizations. We also establish consistency properties, and show that the estimators are splines of degree k −1 with simple knots. We further provide asymptotic minimax risk lower bounds for estimating the derivatives , at a fixed point x 0 under the assumption that . 相似文献