共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a new testing procedure for detecting error cross section dependence after estimating a linear dynamic panel data model with regressors using the generalised method of moments (GMM). The test is valid when the cross-sectional dimension of the panel is large relative to the time series dimension. Importantly, our approach allows one to examine whether any error cross section dependence remains after including time dummies (or after transforming the data in terms of deviations from time-specific averages), which will be the case under heterogeneous error cross section dependence. Finite sample simulation-based results suggest that our tests perform well, particularly the version based on the [Blundell, R., Bond, S., 1998. Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87, 115–143] system GMM estimator. In addition, it is shown that the system GMM estimator, based only on partial instruments consisting of the regressors, can be a reliable alternative to the standard GMM estimators under heterogeneous error cross section dependence. The proposed tests are applied to employment equations using UK firm data and the results show little evidence of heterogeneous error cross section dependence. 相似文献
2.
This paper proposes new unit root tests in the context of a random autoregressive coefficient panel data model, in which the null of a unit root corresponds to the joint restriction that the autoregressive coefficient has unit mean and zero variance. The asymptotic distributions of the test statistics are derived and simulation results are provided to suggest that they perform very well in small samples. 相似文献
3.
This paper introduces a drifting-parameter asymptotic framework to derive accurate approximations to the finite sample distribution of the principal components (PC) estimator in situations when the factors’ explanatory power does not strongly dominate the explanatory power of the cross-sectionally and temporally correlated idiosyncratic terms. Under our asymptotics, the PC estimator is inconsistent. We find explicit formulae for the amount of the inconsistency, and propose an estimator of the number of factors for which the PC estimator works reasonably well. For the special case when the idiosyncratic terms are cross-sectionally but not temporally correlated (or vice versa), we show that the coefficients in the OLS regressions of the PC estimates of factors (loadings) on the true factors (true loadings) are asymptotically normal, and find explicit formulae for the corresponding asymptotic covariance matrix. We explain how to estimate the parameters of the derived asymptotic distributions. Our Monte Carlo analysis suggests that our asymptotic formulae and estimators work well even for relatively small n and T. We apply our theoretical results to test a hypothesis about the factor content of the US stock return data. 相似文献
4.
Jean‐Pierre Urbain Joakim Westerlund 《Oxford bulletin of economics and statistics》2011,73(1):119-139
This article makes an analytical study of the effects of the presence of both common and idiosyncratic stochastic trends on the pooled least squares estimator. The results suggest that the usual result of asymptotic normality depends critically on the absence of the common stochastic trend. 相似文献
5.
It is well known that the standard Breusch and Pagan (1980) LM test for cross-equation correlation in a SUR model is not appropriate for testing cross-sectional dependence in panel data models when the number of cross-sectional units (n) is large and the number of time periods (T) is small. In fact, a scaled version of this LM test was proposed by Pesaran (2004) and its finite sample bias was corrected by Pesaran et al. (2008). This was done in the context of a heterogeneous panel data model. This paper derives the asymptotic bias of this scaled version of the LM test in the context of a fixed effects homogeneous panel data model. This asymptotic bias is found to be a constant related to n and T, which suggests a simple bias corrected LM test for the null hypothesis. Additionally, the paper carries out some Monte Carlo experiments to compare the finite sample properties of this proposed test with existing tests for cross-sectional dependence. 相似文献
6.
This paper studies estimation of panel cointegration models with cross-sectional dependence generated by unobserved global stochastic trends. The standard least squares estimator is, in general, inconsistent owing to the spuriousness induced by the unobservable I(1) trends. We propose two iterative procedures that jointly estimate the slope parameters and the stochastic trends. The resulting estimators are referred to respectively as CupBC (continuously-updated and bias-corrected) and the CupFM (continuously-updated and fully-modified) estimators. We establish their consistency and derive their limiting distributions. Both are asymptotically unbiased and (mixed) normal and permit inference to be conducted using standard test statistics. The estimators are also valid when there are mixed stationary and non-stationary factors, as well as when the factors are all stationary. 相似文献
7.
Traditional stochastic frontier models impose inefficient behavior on all firms in the sample of interest. If the data under investigation represent a mixture of both fully efficient and inefficient firms then off-the-shelf frontier models are statistically inadequate. We introduce the zero inefficiency stochastic frontier model which can accommodate the presence of both efficient and inefficient firms in the sample. We derive the corresponding log-likelihood function, conditional mean of inefficiency, to estimate observation-specific inefficiency and discuss testing for the presence of fully efficient firms. We provide both simulated evidence as well as an empirical example which demonstrates the applicability of the proposed method. 相似文献
8.
Macroeconometric data often come under the form of large panels of time series, themselves decomposing into smaller but still quite large subpanels or blocks. We show how the dynamic factor analysis method proposed in Forni et al. (2000), combined with the identification method of Hallin and Liška (2007), allows for identifying and estimating joint and block-specific common factors. This leads to a more sophisticated analysis of the structures of dynamic interrelations within and between the blocks in such datasets, along with an informative decomposition of explained variances. The method is illustrated with an analysis of a dataset of Industrial Production Indices for France, Germany, and Italy. 相似文献
9.
Tests for symmetry and seasonal unit roots are developed for an extended model of Hylleberg et al. (1990. Seasonal integration and cointegration. Journal Econometrics 44, 215–238.) which can represent both partial seasonal unit roots and threshold effects. Methods based on ordinary least squares (OLS) estimation and instrumental variable (IV) estimation are proposed and compared. For adjusting mean functions, ordinary mean adjustment and recursive mean adjustment are both considered. Several tests are constructed from various combination of estimation schemes and mean adjustment schemes. Among the tests, the tests based on IV-estimation are recommended because they have very simple limiting null distributions and have finite sample power properties comparable to those based on the OLSE. The recommended tests are applied to a US unemployment rate data set and find evidences for both nonstationarities associated with zero frequency and threshold effects. 相似文献
10.
In this paper we consider the problem of estimating semiparametric panel data models with cross section dependence, where the individual-specific regressors enter the model nonparametrically whereas the common factors enter the model linearly. We consider both heterogeneous and homogeneous regression relationships when both the time and cross-section dimensions are large. We propose sieve estimators for the nonparametric regression functions by extending Pesaran’s (2006) common correlated effect (CCE) estimator to our semiparametric framework. Asymptotic normal distributions for the proposed estimators are derived and asymptotic variance estimators are provided. Monte Carlo simulations indicate that our estimators perform well in finite samples. 相似文献
11.
This paper considers parametric inference in a wide range of structural econometric models. It illustrates how the indirect inference principle can be used in the inference of these models. Specifically, we show that an ordinary least squares (OLS) estimation can be used as an auxiliary model, which leads to a method that is similar in spirit to a two-stage least squares (2SLS) estimator. Monte Carlo studies and an empirical analysis of timber sale auctions held in Oregon illustrate the usefulness and feasibility of our approach. 相似文献
12.
This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes. 相似文献
13.
This paper considers Bayesian regression with normal and double-exponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range of prior choices. Moreover, we study conditions for consistency of the forecast based on Bayesian regression as the cross-section and the sample size become large. This analysis serves as a guide to establish a criterion for setting the amount of shrinkage in a large cross-section. 相似文献
14.
The paper introduces a novel approach to testing for unit roots in panels, which takes a new contour that is drawn along the line given by the equi-squared-sum instead of the traditional one given by the equi-sample-size. We show in the paper that the distributions of the unit root tests are asymptotically normal along the new contour under both the null and the local-to-unity alternatives. Subsequently, we demonstrate that this startling finding may be exploited constructively to invent tools and methodologies for effective inferences in panel unit root models. Simulations show that our approach works quite well in finite samples. 相似文献
15.
We characterize the robustness of subsampling procedures by deriving a formula for the breakdown point of subsampling quantiles. This breakdown point can be very low for moderate subsampling block sizes, which implies the fragility of subsampling procedures, even when they are applied to robust statistics. This instability arises also for data driven block size selection procedures minimizing the minimum confidence interval volatility index, but can be mitigated if a more robust calibration method can be applied instead. To overcome these robustness problems, we introduce a consistent robust subsampling procedure for M-estimators and derive explicit subsampling quantile breakdown point characterizations for MM-estimators in the linear regression model. Monte Carlo simulations in two settings where the bootstrap fails show the accuracy and robustness of the robust subsampling relative to the subsampling. 相似文献
16.
GMM estimators have poor finite sample properties in highly overidentified models. With many moment conditions the optimal weighting matrix is poorly estimated. We suggest using principal components of the weighting matrix. This effectively drops some of the moment conditions. Our simulations, done in the context of the dynamic panel data model, show that the resulting GMM estimator has better finite sample properties than the usual two-step GMM estimator, in the sense of smaller bias and more reliable standard errors. 相似文献
17.
This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d0 are included. The results establish that the bootstrap provides higher-order improvements over the delta method. Analogous results are given for tests. The CIs and tests are based on one or other of two approximate maximum likelihood estimators. The first estimator solves the first-order conditions with respect to the covariance parameters of a “plug-in” log-likelihood function that has the unknown mean replaced by the sample mean. The second estimator does likewise for a plug-in Whittle log-likelihood. 相似文献
18.
Liqun Wang 《Journal of econometrics》2011,165(1):30-44
This paper deals with a nonlinear errors-in-variables model where the distributions of the unobserved predictor variables and of the measurement errors are nonparametric. Using the instrumental variable approach, we propose method of moments estimators for the unknown parameters and simulation-based estimators to overcome the possible computational difficulty of minimizing an objective function which involves multiple integrals. Both estimators are consistent and asymptotically normally distributed under fairly general regularity conditions. Moreover, root-n consistent semiparametric estimators and a rank condition for model identifiability are derived using the combined methods of the nonparametric technique and Fourier deconvolution. 相似文献
19.
In the presence of heteroskedastic disturbances, the MLE for the SAR models without taking into account the heteroskedasticity is generally inconsistent. The 2SLS estimates can have large variances and biases for cases where regressors do not have strong effects. In contrast, GMM estimators obtained from certain moment conditions can be robust. Asymptotically valid inferences can be drawn with consistently estimated covariance matrices. Efficiency can be improved by constructing the optimal weighted estimation. 相似文献
20.
J. S. Cramer 《Oxford bulletin of economics and statistics》2007,69(4):545-555
In probit and logit models, the β coefficients vary inversely with the variance of the disturbances. The omission of a relevant orthogonal regressor leads to increased unobserved heterogeneity, and this depresses the β coefficients of the remaining regressors towards zero. For the probit model, Wooldridge (Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge, MA, 2002) has shown that this bias does not carry over to the effect of these regressors on the outcome. We find by simulations that this also holds for the logit model, even when omitting a variable leads to severe mis‐specification of the disturbance. More simulations show that logit analysis is quite insensitive to pure mis‐specification of the disturbance as such. 相似文献